PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma

  • Heribert HänscheidEmail author
  • Reinhart A. Sweeney
  • Michael Flentje
  • Andreas K. Buck
  • Mario Löhr
  • Samuel Samnick
  • Michael Kreissl
  • Frederik A. Verburg
Short Communication



To investigate whether the tumour uptake of radionuclide in peptide receptor radionuclide therapy (PRRT) of meningioma can be predicted by a PET scan with 68Ga-labelled somatostatin analogue.


In this pilot trial, 11 meningioma patients with a PET scan indicating somatostatin receptor expression received PRRT with 7.4 GBq 177Lu-DOTATOC or 177Lu-DOTATATE, followed by external beam radiotherapy. A second PET scan was scheduled for 3 months after therapy. During PRRT, multiple whole-body scans and a SPECT/CT scan of the head and neck region were acquired and used to determine the kinetics and dose in the voxel with the highest radionuclide uptake within the tumour. Maximum voxel dose and retention of activity 1 h after administration in PRRT were compared to the maximum standardized uptake values (SUVmax) in the meningiomas from the PET scans before and after therapy.


The median SUVmax in the meningiomas was 13.7 (range 4.3 to 68.7), and the maximum fractional radionuclide uptake in voxels of size 0.11 cm³ was a median of 23.4 × 10−6 (range 0.4 × 10−6 to 68.3 × 10−6). A strong correlation was observed between SUVmax and the PRRT radionuclide tumour retention in the voxels with the highest uptake (Spearman’s rank test, P < 0.01). Excluding one patient who showed large differences in biokinetics between PET and PRRT and another patient with incomplete data, linear regression analysis indicated significant correlations between SUVmax and the therapeutic uptake (r = 0.95) and between SUVmax and the maximum voxel dose from PRRT (r = 0.76). Observed absolute deviations from the values expected from regression were a median of 5.6 × 10−6 (maximum 9.3 × 10−6) for the voxel fractional radionuclide uptake and 0.40 Gy per GBq (maximum 0.85 Gy per GBq) 177Lu for the voxel dose from PRRT.


PET with 68Ga-labelled somatostatin analogues allows the pretherapeutic assessment of tumour radionuclide uptake in PRRT of meningioma and an estimate of the achievable dose.


177Lu-DOTATOC Dosimetry Meningioma PRRT 


Conflicts of interest



  1. 1.
    Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD. Medical therapies for meningiomas. J Neurooncol. 2010;99:365–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartolomei M, Bodei L, De Cicco C, Grana CM, Cremonesi M, Botteri E, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging. 2009;36:1407–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Kwekkeboom DJ, De Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68Ga]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42:1053–6.PubMedGoogle Scholar
  5. 5.
    Milker-Zabel S, Zabel-du BA, Henze M, Huber P, Schulz-Ertner D, Hoess A, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys. 2006;65:222–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.PubMedCrossRefGoogle Scholar
  7. 7.
    Forrer F, Uusijarvi H, Waldherr C, Cremonesi M, Bernhardt P, Mueller-Brand J, et al. A comparison of (111)In-DOTATOC and (111)In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1257–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Helisch A, Forster GJ, Reber H, Buchholz HG, Arnold R, Goke B, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1386–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, et al. Comparison of [(177)Lu-DOTA(0),Tyr(3)]octreotate and [(177)Lu-DOTA(0),Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Heribert Hänscheid
    • 1
    Email author
  • Reinhart A. Sweeney
    • 2
  • Michael Flentje
    • 2
  • Andreas K. Buck
    • 1
  • Mario Löhr
    • 3
  • Samuel Samnick
    • 1
  • Michael Kreissl
    • 1
  • Frederik A. Verburg
    • 1
    • 4
  1. 1.Department of Nuclear MedicineUniversity Hospital WürzburgWürzburgGermany
  2. 2.Department of Radiation OncologyUniversity Hospital WürzburgWürzburgGermany
  3. 3.Department of NeurosurgeryUniversity Hospital WürzburgWürzburgGermany
  4. 4.Department of Nuclear MedicineRWTH University Hospital AachenAachenGermany

Personalised recommendations