Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET

  • Rik Ossenkoppele
  • Nelleke Tolboom
  • Jessica C. Foster-Dingley
  • Sofie F. Adriaanse
  • Ronald Boellaard
  • Maqsood Yaqub
  • Albert D. Windhorst
  • Frederik Barkhof
  • Adriaan A. Lammertsma
  • Philip Scheltens
  • Wiesje M. van der Flier
  • Bart N. M. van Berckel
Original Article

Abstract

Purpose

[11C]PIB and [18F]FDDNP are PET tracers for in vivo detection of the neuropathology underlying Alzheimer’s disease (AD). [18F]FDG is a glucose analogue and its uptake reflects metabolic activity. The purpose of this study was to examine longitudinal changes in these tracers in patients with AD or mild cognitive impairment (MCI) and in healthy controls.

Methods

Longitudinal, paired, dynamic [11C]PIB and [18F]FDDNP (90 min each) and static [18F]FDG (15 min) PET scans were obtained in 11 controls, 12 MCI patients and 8 AD patients. The mean interval between baseline and follow-up was 2.5 years (range 2.0–4.0 years). Parametric [11C]PIB and [18F]FDDNP images of binding potential (BPND) and [18F]FDG standardized uptake value ratio (SUVr) images were generated.

Results

A significant increase in global cortical [11C]PIB BPND was found in MCI patients, but no changes were observed in AD patients or controls. Subsequent regional analysis revealed that this increase in [11C]PIB BPND in MCI patients was most prominent in the lateral temporal lobe (p < 0.05). For [18F]FDDNP, no changes in global BPND were found. [18F]FDG uptake was reduced at follow-up in the AD group only, especially in frontal, parietal and lateral temporal lobes (all p < 0.01). Changes in global [11C]PIB binding (ρ = −0.42, p < 0.05) and posterior cingulate [18F]FDG uptake (ρ = 0.54, p < 0.01) were correlated with changes in Mini-Mental-State Examination score over time across groups, whilst changes in [18F]FDDNP binding (ρ = −0.18, p = 0.35) were not.

Conclusion

[11C]PIB and [18F]FDG track molecular changes in different stages of AD. We found increased amyloid load in MCI patients and progressive metabolic impairment in AD patients. [18F]FDDNP seems to be less useful for examining disease progression.

Keywords

Alzheimer’s disease Positron emission tomography [11C]PIB [18F]FDDNP [18F]FDG 

Notes

Acknowledgments

This work was financially supported by the Internationale Stichting Alzheimer Onderzoek (ISAO, grant 05512) and the American Health Assistance Foundation (AHAF, grant A2005-026).

Conflicts of interest

None.

References

  1. 1.
    Cummings JL. Alzheimer's disease. N Engl J Med. 2004;351:56–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain. 2009;132:213–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Silverman DHS, Small GW, Chang CY, Lu CS, de Aburto MAK, Chen W, et al. Positron emission tomography in evaluation of dementia. JAMA. 2001;286:2120–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomquist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and Tau in mild cognitive impairment. N Engl J Med. 2006;355:2652–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Tolboom N, Yaqub M, van der Flier WM, Boellaard R, Luurtsema G, Windhorst AD, et al. Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J Nucl Med. 2009;50:191–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Tolboom N, Flier WM, Boverhoff J, Yaqub M, Wattjes M, Raijmakers PG, et al. Molecular imaging in the diagnosis of Alzheimer's disease: visual interpretation of [11C]PIB and [18F]FDDNP PET images. J Neurol Neurosurg Psychiatry. 2010;81:882–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease. J Nucl Med. 2007;48:547–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Villemagne VL, Pike K, Chetelat G, Ellis KA, Mulligan R, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Koivunen J, Scheinin M, Virta JR, Aalto S, Vahlberg T, Nagren K, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011;76:1085–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain. 2006;129:2856–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Kadir A, Almkvist O, Forsberg A, Wall A, Engler H, Långström B, et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease. Neurobiol Aging 2012;33:198.e1–14.CrossRefGoogle Scholar
  15. 15.
    Scheinin NM, Aalto S, Koikkalainen J, Lotjonen J, Karrasch M, Kemppainen N, et al. Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology. 2009;73:1186–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Jack Jr CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. The Alzheimer's disease neuroimaging initiative. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain. 2009;132:1355–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-[beta] load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Shin J, Lee SY, Kim SH, Kim YB, Cho SJ. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer's disease. Neuroimage. 2008;43:236–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease. J Neurosci. 2001;21:RC189.PubMedGoogle Scholar
  20. 20.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34:939–44.PubMedGoogle Scholar
  21. 21.
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med. 1997;38:1614–23.PubMedGoogle Scholar
  23. 23.
    Wilson AA, Garcia A, Chestaskova A, Kung HF, Houle SA. A rapid one-step radiosynthesis of the beta-amyloid imaging radiotracer N-methyl-[C-11]2-(′4-methylaminophenyl)-6-hydroxybenzothiazole ([C-11]-6-OH-BTA-1). J Labelled Comp Radiopharm. 2004;47:679–82.CrossRefGoogle Scholar
  24. 24.
    Klok RP, Klein PJ, van Berckel BNM, Tolboom N, Lammertsma AA, Windhorst AD. Synthesis of 2-(1,1-dicyanopropen-2-yl)-6-(2-[18F]-fluoroethyl)-methylamino-naphthalene ([18F]FDDNP). Appl Radiat Isot. 2008;66:203–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage. 2005;24:969–79.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu Y, Carson R. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22:1440–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Yaqub M, Tolboom N, Boellaard R, van Berckel BNM, van Tilburg EW, Luurtsema G, et al. Simplified parametric methods for [11C]PIB studies. Neuroimage. 2008;42:76–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Yaqub M, Tolboom N, van Berckel BNM, Scheltens P, Lammertsma AA, Boellaard R. Simplified parametric methods for [18F]FDDNP studies. Neuroimage. 2010;49:433–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol. 1989;77:314–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.PubMedCrossRefGoogle Scholar
  31. 31.
    Hardy JA, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;197:353–6.CrossRefGoogle Scholar
  32. 32.
    Hyman BT, Marzloff K, Arriagada PV. The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol. 1993;52:594–600.PubMedCrossRefGoogle Scholar
  33. 33.
    Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J Neurosci. 2001;21:858–64.PubMedGoogle Scholar
  34. 34.
    Bouwman FH, van der Flier WM, Schoonenboom NSM, van Elk EJ, Kok A, Rijmen F, et al. Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology. 2007;69:1006–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Thompson PW, Ye L, Morgenstern JL, Sue L, Beach TG, Judd DJ, et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer's disease pathologies. J Neurochem. 2009;109:623–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Tolboom N, van der Flier WM, Yaqub M, Boellaard R, Verwey NA, Blankenstein MA, et al. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med. 2009;50:1464–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Tolboom N, Flier WM, Yaqub M, Koene T, Boellaard R, Windhorst AD, et al. Differential association of [11C]PIB and [18F]FDDNP binding with cognitive impairment. Neurology. 2009;73:2079–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer's disease treatment studies. Am J Psychiatry. 2002;159:738–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Forster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P, et al. Regional expansion of hypometabolism in Alzheimer's disease follows amyloid deposition with temporal delay. Biol Psychiatry 2011. doi: 10.1016/j.biopsych.2011.04.023
  40. 40.
    van der Vlies AE, Koedam ELGE, Pijnenburg YAL, Twisk JWR, Scheltens P, van der Flier WM. Most rapid cognitive decline in APOE E4 negative Alzheimer's disease with early onset. Psychol Med. 2009;39:1907–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Verhage F. Intelligentie en leeftijd: onderzoek bij Nederlanders van twaalf tot zevenenzeventig jaar [Intelligence and age: study with Dutch people aged 12 to 77]. Assen: Van Gorcum; 1964.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rik Ossenkoppele
    • 1
    • 2
  • Nelleke Tolboom
    • 1
    • 2
  • Jessica C. Foster-Dingley
    • 2
  • Sofie F. Adriaanse
    • 1
    • 2
  • Ronald Boellaard
    • 2
  • Maqsood Yaqub
    • 2
  • Albert D. Windhorst
    • 2
  • Frederik Barkhof
    • 4
  • Adriaan A. Lammertsma
    • 2
  • Philip Scheltens
    • 1
  • Wiesje M. van der Flier
    • 1
    • 3
  • Bart N. M. van Berckel
    • 2
  1. 1.Department of Neurology & Alzheimer CenterVU University Medical CenterAmsterdamNetherlands
  2. 2.Department of Nuclear Medicine & PET ResearchVU University Medical CenterAmsterdamNetherlands
  3. 3.Department of Epidemiology & BiostatisticsVU University Medical CenterAmsterdamNetherlands
  4. 4.Department of RadiologyVU University Medical CenterAmsterdamNetherlands

Personalised recommendations