Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas

  • Alexander Heinzel
  • Stephanie Stock
  • Karl-Josef Langen
  • Dirk Müller
Original Article



Several diagnostic trials have indicated that the combined use of 18F-fluoroethyl-l-tyrosine (FET) PET and MRI may be superior to MRI alone in selecting the biopsy site for the diagnosis of gliomas. We estimated the cost-effectiveness of the use of amino acid PET compared to MRI alone from the perspective of the German statutory health insurance.


To evaluate the incremental cost-effectiveness of the use of amino acid PET, a decision tree model was built. The effectiveness of FET PET was determined by the probability of a correct diagnosis. Costs were estimated for a baseline scenario and for a more expensive scenario in which disease severity was considered. The robustness of the results was tested using deterministic and probabilistic sensitivity analyses.


The combined use of PET and MRI resulted in an increase of 18.5% in the likelihood of a correct diagnosis. The incremental cost-effectiveness ratio for one additional correct diagnosis using FET PET was €6,405 for the baseline scenario and €9,114 for the scenario based on higher disease severity. The probabilistic sensitivity analysis confirmed the robustness of the results.


The model indicates that the use of amino acid PET may be cost-effective in patients with glioma. As a result of several limitations in the data used for the model, further studies are needed to confirm the results.


Amino acid PET Cost-effectiveness analysis Biopsy Gliomas Decision tree model 


Conflicts of interest



  1. 1.
    Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007;48(4):519–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Deb P, Sharma MC, Mahapatra AK, Agarwal D, Sarkar C. Glioblastoma multiforme with long term survival. Neurol India. 2005;53(3):329–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Walid MS, Smisson III HF, Robinson Jr JS. Long-term survival after glioblastoma multiforme. South Med J. 2008;101(9):971–2.PubMedCrossRefGoogle Scholar
  4. 4.
    Scoccianti S, Magrini SM, Ricardi U, Detti B, Buglione M, Sotti G, et al. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the Central Nervous System Study Group of Airo (Italian Association of Radiation Oncology). Neurosurgery. 2010;67(2):446–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Grant R. Overview: brain tumour diagnosis and management/Royal College of Physicians guidelines. J Neurol Neurosurg Psychiatry. 2004;75 Suppl 2:ii18–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R. Gliomas in adults. Dtsch Arztebl Int. 2010;107(45):799–808.PubMedGoogle Scholar
  7. 7.
    Stupp R, Roila F. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2008;19 Suppl 2:ii83–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaufman HH, Catalano Jr LW. Diagnostic brain biopsy: a series of 50 cases and a review. Neurosurgery. 1979;4(2):129–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Sawyer J, Ellner J, Ransohoff DF. To biopsy or not to biopsy in suspected herpes simplex encephalitis: a quantitative analysis. Med Decis Mak. 1988;8(2):95–101.CrossRefGoogle Scholar
  10. 10.
    DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48(9):1468–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8.PubMedGoogle Scholar
  14. 14.
    Langen KJ, Floeth FW, Stoffels G, Hamacher K, Coenen HH, Pauleit D. Improved diagnostics of cerebral gliomas using FET PET. Z Med Phys. 2007;17(4):237–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med. 1997;38(9):1459–62.PubMedGoogle Scholar
  16. 16.
    Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10(21):7163–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry. 2004;75(10):1457–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Muragaki Y, Chernov M, Maruyama T, Ochiai T, Taira T, Kubo O, et al. Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate? Minim Invasive Neurosurg. 2008;51(5):275–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(Pt 3):678–87.PubMedCrossRefGoogle Scholar
  20. 20.
    Pirotte B, Goldman S, Bidaut LM, Luxen A, Stanus E, Brucher JM, et al. Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy. Acta Neurochir (Wien). 1995;134(1–2):79–82.CrossRefGoogle Scholar
  21. 21.
    Langen KJ, Bartenstein P, Boecker H, Brust P, Coenen HH, Drzezga A, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50(4):167–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Vander BT, Asenbaum S, Bartenstein P, Halldin C, Kapucu O, Van Laere K, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33(11):1374–80.CrossRefGoogle Scholar
  23. 23.
    Heinzel A, Stock S, Langen KJ, Müller D. Cost-effectiveness analysis of amino acid PET guided surgery for supratentorial high-grade gliomas. J Nucl Med. 2011; in Press.Google Scholar
  24. 24.
    Doubilet P, Begg CB, Weinstein MC, Braun P, McNeil BJ. Probabilistic sensitivity analysis using Monte Carlo simulation. A practical approach. Med Decis Mak. 1985;5(2):157–77.CrossRefGoogle Scholar
  25. 25.
    Meltzer MI, Dennis DT, Orloski KA. The cost effectiveness of vaccinating against Lyme disease. Emerg Infect Dis. 1999;5(3):321–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Burgos JL, Gaebler JA, Strathdee SA, Lozada R, Staines H, Patterson TL. Cost-effectiveness of an intervention to reduce HIV/STI incidence and promote condom use among female sex workers in the Mexico-US border region. PLoS One. 2010;5(6):e11413.PubMedCrossRefGoogle Scholar
  27. 27.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Uyl-de Groot CA, Stupp R, van der Bent M. Cost-effectiveness of temozolomide for the treatment of newly diagnosed glioblastoma multiforme. Expert Rev Pharmacoecon Outcomes Res. 2009;9(3):235–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Plotkin M, Blechschmidt C, Auf G, Nyuyki F, Geworski L, Denecke T, et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol. 2010;20(10):2496–502.PubMedCrossRefGoogle Scholar
  30. 30.
    Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol. 1998;49(4):436–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Temple R, Ellenberg SS. Placebo-controlled trials and active-control trials in the evaluation of new treatments. Part 1: ethical and scientific issues. Ann Intern Med. 2000;133(6):455–63.PubMedGoogle Scholar
  32. 32.
    Miller FG, Brody H. What makes placebo-controlled trials unethical? Am J Bioeth. 2002;2(2):3–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alexander Heinzel
    • 1
  • Stephanie Stock
    • 2
  • Karl-Josef Langen
    • 3
  • Dirk Müller
    • 2
  1. 1.Department of Nuclear Medicine of the Heinrich-Heine University of DuesseldorfResearch Centre JuelichJuelichGermany
  2. 2.Institute for Health Economics and Clinical EpidemiologyUniversity Hospital of CologneCologneGermany
  3. 3.Institute for Neuroscience and Medicine 4Research Centre JuelichJuelichGermany

Personalised recommendations