Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs

  • Charlotte de Lange
  • Eirik Malinen
  • Hong Qu
  • Kjersti Johnsrud
  • Arne Skretting
  • Ola Didrik Saugstad
  • Berit H. Munkeby
Original Article



Changes in cerebral glucose metabolism may be an early prognostic indicator of perinatal hypoxic–ischaemic injury. In this study dynamic 18F-FDG PET was used to evaluate cerebral glucose metabolism in piglets after global perinatal hypoxia and the impact of the resuscitation strategy using room air or hyperoxia.


New-born piglets (n = 16) underwent 60 min of global hypoxia followed by 30 min of resuscitation with a fraction of inspired oxygen (FiO2) of 0.21 or 1.0. Dynamic FDG PET, using a microPET system, was performed at baseline and repeated at the end of resuscitation under stabilized haemodynamic conditions. MRI at 3 T was performed for anatomic correlation. Global and regional cerebral metabolic rates of glucose (CMRgl) were assessed by Patlak analysis for the two time-points and resuscitation groups.


Global hypoxia was found to cause an immediate decrease in cerebral glucose metabolism from a baseline level (mean ± SD) of 21.2 ± 7.9 to 12.6 ± 4.7 μmol/min/100 g (p <0.01). The basal ganglia, cerebellum and cortex showed the greatest decrease in CMRgl but no significant differences in global or regional CMRgl between the resuscitation groups were found.


Dynamic FDG PET detected decreased cerebral glucose metabolism early after perinatal hypoxia in piglets. The decrease in CMRgl may indicate early changes of mild cerebral hypoxia–ischaemia. No significant effect of hyperoxic resuscitation on the degree of hypometabolism was found in this early phase after hypoxia. Cerebral FDG PET can provide new insights into mechanisms of perinatal hypoxic–ischaemic injury where early detection plays an important role in instituting therapy.


Glucose metabolism FDG PET Perinatal hypoxia–ischaemia Piglet 



The authors thank the Child Foundation at Oslo University Hospital for their grant in support of this research. We are also grateful to the bioengineers of the Department of Nuclear Medicine for their help in performing the study.

Financial support

A grant from the Child Foundation at Oslo University Hospital.

Conflicts of interest



  1. 1.
    Vento M, Sastre J, Asensi MA, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Munkeby BH, Borke WB, Bjornland K, Sikkeland LI, Borge GI, Lømo J, et al. Resuscitation of hypoxic piglets with 100% O2 increases pulmonary metalloproteinases and IL-8. Pediatr Res. 2005;58:542–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94:176–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Saugstad OD. Is oxygen more toxic than currently believed? Pediatrics. 2001;108:1203–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Biban P, Filipovic-Grcic B, Biarent D, Manzoni P. New cardiopulmonary resuscitation guidelines 2010: managing the newly born in delivery room. Early Hum Dev. 2011;87 Suppl 1:S9–S11.PubMedCrossRefGoogle Scholar
  6. 6.
    Accardo J, Kammann H, Hoon Jr AH. Neuroimaging in cerebral palsy. J Pediatr. 2004;145:S19–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Fatemi A, Wilson MA, Johnston MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36:835–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117:S28–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant – current concepts. Early Hum Dev. 2004;80:125–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20:1399–405.PubMedGoogle Scholar
  11. 11.
    Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239:839–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Ilves P, Lintrop M, Metsvaht T, Vaher U, Talvik T. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants. Acta Paediatr. 2004;93:523–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Rutherford M, Biarge MM, Allsop J, Counsell S, Cowan F. MRI of perinatal brain injury. Pediatr Radiol. 2010;40:819–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Munkeby BH, De Lange C, Emblem KE, Bjørnerud A, Kro GA, Andresen J, et al. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol. 2008;49:1049–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr. 1995;84:1289–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.PubMedCrossRefGoogle Scholar
  17. 17.
    Kannan S, Chugani HT. Applications of positron emission tomography in the newborn nursery. Semin Perinatol. 2010;34:39–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRefGoogle Scholar
  19. 19.
    Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Batista CE, Chugani HT, Juhasz C, Behen ME, Shankaran S. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol. 2007;36:330–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC. Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol. 1983;25:143–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, et al. Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med. 1993;20:759–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Thorngren-Jerneck K, Hellstrom-Westas L, Ryding E, Rosen I. Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res. 2003;54:854–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, et al. Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full term newborn infant. Neuropediatrics. 1988;19:146–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, Hernandez-Andrade E, Lingman G, Ohlsson T, et al. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res. 2001;66:844–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab. 1998;18:222–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Vannucci RC, Christensen MA, Stein DT. Regional cerebral glucose utilization in the immature rat: effect of hypoxia-ischemia. Pediatr Res. 1989;26:208–14.PubMedCrossRefGoogle Scholar
  28. 28.
    de Lange C, Brabrand K, Emblem KE, Bjornerud A, Løberg EM, Saugstad OD, et al. Cerebral perfusion in perinatal hypoxia and resuscitation assessed by transcranial contrast-enhanced ultrasound and 3 T MRI in newborn pigs. Invest Radiol. 2011;46:686–96.PubMedGoogle Scholar
  29. 29.
    Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB, et al. In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O]water injection, [15O]oxygen inhalation and dual injections of [18F]fluorodeoxyglucose. J Neurosci Methods. 1997;77:199–209.PubMedCrossRefGoogle Scholar
  31. 31.
    Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab. 1985;5:163–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res. 2001;49:735–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol. 2003;102:628–36.PubMedCrossRefGoogle Scholar
  37. 37.
    Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab. 1994;14:279–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Charlotte de Lange
    • 1
    • 3
  • Eirik Malinen
    • 2
    • 6
  • Hong Qu
    • 5
  • Kjersti Johnsrud
    • 3
  • Arne Skretting
    • 4
  • Ola Didrik Saugstad
    • 1
    • 7
  • Berit H. Munkeby
    • 1
  1. 1.Department of Paediatric ResearchOslo University Hospital, RikshospitaletOsloNorway
  2. 2.Department of Medical PhysicsOslo University HospitalOsloNorway
  3. 3.Department of Radiology and Nuclear MedicineOslo University Hospital, RikshospitaletOsloNorway
  4. 4.The Intervention CentreOslo University HospitalOsloNorway
  5. 5.Centre for Molecular Biology and Neuroscience, Department of Anatomy, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  6. 6.Department of PhysicsUniversity of OsloOsloNorway
  7. 7.Department of MedicineUniversity of OsloOsloNorway

Personalised recommendations