18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

  • Kenji Hirata
  • Shunsuke Terasaka
  • Tohru Shiga
  • Naoya Hattori
  • Keiichi Magota
  • Hiroyuki Kobayashi
  • Shigeru Yamaguchi
  • Kiyohiro Houkin
  • Shinya Tanaka
  • Yuji Kuge
  • Nagara Tamaki
Original Article



Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that 18F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas.


This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and 18F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated.


Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71–3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09–1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM patients (1.46 ± 0.75, range 0.91–3.79) than in non-GBM patients (1.07 ± 0.62, range 0.66–2.95, p ≤ 0.05); however, overlap of the ranges did not allow clear differentiation between GBM and non-GBM. The uptake volume of FMISO was larger in GBM (27.18 ± 10.46%, range 14.02–46.67%) than in non-GBM (6.07 ± 2.50%, range 2.12–9.22%, p ≤ 0.001).


These preliminary data suggest that FMISO PET may distinguish GBM from lower grade gliomas.


Glioblastoma multiforme Hypoxia Fluoromisonidazole Fluorodeoxyglucose 



The authors would like to thank the staff of the Department of Nuclear Medicine, Central Institute of Isotope Science, and Department of Cancer Pathology, Hokkaido University, and Department of Radiology, Hokkaido University Hospital for supporting this work.

Sources of funding

This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of Japan. This research was also supported in part by a Grant-in-Aid for General Scientific Research from the Japan Society for the Promotion of Science.


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97–109. doi: 10.1007/s00401-007-0243-4.PubMedCrossRefGoogle Scholar
  2. 2.
    Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 2008;9:29–38. doi: 10.1016/S1470-2045(07)70384-4.PubMedCrossRefGoogle Scholar
  3. 3.
    Cho KH, Kim JY, Lee SH, Yoo H, Shin SH, Moon SH, et al. Simultaneous integrated boost intensity-modulated radiotherapy in patients with high-grade gliomas. Int J Radiat Oncol Biol Phys 2010;78:390–7. doi: 10.1016/j.ijrobp.2009.08.029.PubMedCrossRefGoogle Scholar
  4. 4.
    Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. Lancet 2003;361:323–31. doi: 10.1016/S0140-6736(03)12328-8.PubMedCrossRefGoogle Scholar
  5. 5.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986;65:476–83. doi: 10.3171/jns.1986.65.4.0476.PubMedCrossRefGoogle Scholar
  6. 6.
    Sawaya R. Extent of resection in malignant gliomas: a critical summary. J Neurooncol 1999;42:303–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 2002;359:1011–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, et al. Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 1997;7:68–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging–prediction of patient clinical response. Radiology 2006;238:658–67. doi: 10.1148/radiol.2382042180.PubMedCrossRefGoogle Scholar
  10. 10.
    Cao Y, Nagesh V, Hamstra D, Tsien CI, Ross BD, Chenevert TL, et al. The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res 2006;66:8912–7. doi: 10.1158/0008-5472.CAN-05-4328.PubMedCrossRefGoogle Scholar
  11. 11.
    Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 2008;247:808–17. doi: 10.1148/radiol.2473070571.PubMedCrossRefGoogle Scholar
  12. 12.
    Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32:1323–9.PubMedGoogle Scholar
  13. 13.
    Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778–85.PubMedGoogle Scholar
  14. 14.
    Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003;64:227–37.PubMedCrossRefGoogle Scholar
  15. 15.
    Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 2006;246:85–94. doi: 10.1016/j.jns.2006.02.015.PubMedCrossRefGoogle Scholar
  16. 16.
    Oliver L, Olivier C, Marhuenda FB, Campone M, Vallette FM. Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy. Curr Mol Pharmacol 2009;2:263–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Flynn JR, Wang L, Gillespie DL, Stoddard GJ, Reid JK, Owens J, et al. Hypoxia-regulated protein expression, patient characteristics, and preoperative imaging as predictors of survival in adults with glioblastoma multiforme. Cancer 2008;113:1032–42. doi: 10.1002/cncr.23678.PubMedCrossRefGoogle Scholar
  18. 18.
    Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang WT, Nelson PT, et al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 2004;10:8177–84. doi: 10.1158/1078-0432.CCR-04-1081.PubMedCrossRefGoogle Scholar
  19. 19.
    Lally BE, Rockwell S, Fischer DB, Collingridge DR, Piepmeier JM, Knisely JP. The interactions of polarographic measurements of oxygen tension and histological grade in human glioma. Cancer J 2006;12:461–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, Durand RE, et al. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 1987;111:292–304.PubMedCrossRefGoogle Scholar
  21. 21.
    Martin GV, Caldwell JH, Rasey JS, Grunbaum Z, Cerqueira M, Krohn KA. Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J Nucl Med 1989;30:194–201.PubMedGoogle Scholar
  22. 22.
    Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 1989;17:985–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 1992;33:2133–7.PubMedGoogle Scholar
  24. 24.
    Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 2004;10:2245–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 2004;45:1851–9.PubMedGoogle Scholar
  26. 26.
    Cher LM, Murone C, Lawrentschuk N, Ramdave S, Papenfuss A, Hannah A, et al. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 2006;47:410–8.PubMedGoogle Scholar
  27. 27.
    Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 2008;14:2623–30. doi: 10.1158/1078-0432.CCR-07-4995.PubMedCrossRefGoogle Scholar
  28. 28.
    Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 2009;50:36–44. doi: 10.2967/jnumed.108.055467.PubMedCrossRefGoogle Scholar
  29. 29.
    Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord Jr EC, et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res 2009;69:4502–9. doi: 10.1158/0008-5472.CAN-08-3884.PubMedCrossRefGoogle Scholar
  30. 30.
    Kawai N, Maeda Y, Kudomi N, Miyake K, Okada M, Yamamoto Y, et al. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2011;38:441–50. doi: 10.1007/s00259-010-1645-4.PubMedCrossRefGoogle Scholar
  31. 31.
    Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Gil HS, Kang SH, et al. Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module. Nucl Med Biol 2005;32:899–905. doi: 10.1016/j.nucmedbio.2005.06.003.PubMedCrossRefGoogle Scholar
  32. 32.
    Tang G, Wang M, Tang X, Gan M, Luo L. Fully automated one-pot synthesis of [18F]fluoromisonidazole. Nucl Med Biol 2005;32:553–8. doi: 10.1016/j.nucmedbio.2005.03.010.PubMedCrossRefGoogle Scholar
  33. 33.
    Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238–48.PubMedGoogle Scholar
  34. 34.
    Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 1994;35:1528–37.PubMedGoogle Scholar
  35. 35.
    Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004;10:7163–70. doi: 10.1158/1078-0432.CCR-04-0262.PubMedCrossRefGoogle Scholar
  36. 36.
    Galldiks N, Ullrich R, Schroeter M, Fink GR, Jacobs AH, Kracht LW. Volumetry of [(11)C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging 2010;37:84–92. doi: 10.1007/s00259-009-1219-5.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 2007;37:451–61. doi: 10.1053/j.semnuclmed.2007.07.001.PubMedCrossRefGoogle Scholar
  38. 38.
    Collingridge DR, Piepmeier JM, Rockwell S, Knisely JP. Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 1999;53:127–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 2003;510:285–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Rasey JS, Nelson NJ, Chin L, Evans ML, Grunbaum Z. Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res 1990;122:301–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol 2005;50:2209–24. doi: 10.1088/0031-9155/50/10/002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kenji Hirata
    • 1
  • Shunsuke Terasaka
    • 2
  • Tohru Shiga
    • 1
  • Naoya Hattori
    • 3
  • Keiichi Magota
    • 4
  • Hiroyuki Kobayashi
    • 2
  • Shigeru Yamaguchi
    • 2
  • Kiyohiro Houkin
    • 2
  • Shinya Tanaka
    • 5
  • Yuji Kuge
    • 6
  • Nagara Tamaki
    • 1
  1. 1.Department of Nuclear Medicine, Graduate School of MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of NeurosurgeryGraduate School of Medicine, Hokkaido UniversitySapporoJapan
  3. 3.Department of Molecular ImagingGraduate School of Medicine, Hokkaido UniversitySapporoJapan
  4. 4.Department of RadiologyHokkaido University HospitalSapporoJapan
  5. 5.Department of Cancer PathologyGraduate School of Medicine, Hokkaido UniversitySapporoJapan
  6. 6.Central Institute of Isotope ScienceHokkaido UniversitySapporoJapan

Personalised recommendations