Advertisement

SPECT/CT versus MRI in patients with nonspecific pain of the hand and wrist – a pilot study

  • Martin W. Huellner
  • Alexander Bürkert
  • Florian S. Schleich
  • Maja Schürch
  • Urs Hug
  • Urs von Wartburg
  • Klaus Strobel
  • Patrick Veit-Haibach
Original Article

Abstract

Background

Hand and wrist pain is a diagnostic challenge for hand surgeons and radiologists due to the complex anatomy of the involved small structures. The American College of Radiology recommends MRI as the study of choice in patients with chronic wrist pain if radiographs are negative. Lately, state-of-the-art SPECT/CT systems have been introduced and may help in the diagnosis of this selected indication.

Materials and methods

This retrospective study included 21 patients with nonspecific pain of the hand/wrist. The diagnosis of nonspecific wrist pain was made by the referring hand surgeon based on patient history, clinical examination, plain radiography and clinical guidelines. All patients received planar early-phase imaging and late-phase SPECT/CT imaging as well as MRI. Lesions were divided into major (causative) and minor (not causative) pathologies according to clinical follow-up. Furthermore, oedema-like bone marrow changes seen on MRI were compared with focally increased tracer uptake seen on SPECT/CT images.

Results

MRI yielded a quite high sensitivity (0.86), but a low specificity (0.20). In contrast, SPECT/CT yielded a high specificity (1.00) and a low sensitivity (0.71). Oedema-like bone marrow changes were detected in 15 lesions in 11 patients. In ten lesions with bone marrow oedema on MRI, foci of elevated tracer uptake were detected on SPECT/CT. Overall, MRI was more sensitive, but SPECT/CT was more specific in the evaluation of causative pathologies.

Conclusion

In this initial comparison, SPECT/CT showed higher specificity than MRI in the evaluation of causative pathologies in patients with nonspecific wrist pain. However, MRI was more sensitive. Thus, SPECT/CT was shown to be a useful problem-solving tool in the diagnostic work-up of these patients.

Keywords

Wrist pain Hand pain Chronic pain SPECT/CT MRI 

Abbreviations

CRPS

Chronic regional pain syndrome

TFCC

Triangular fibrocartilage complex

Notes

Conflicts of interest

None.

References

  1. 1.
    Dalinka MK, Alazraki N, Berquist TH, Daffner RH, DeSmet AA, el-Khoury GY, et al. Chronic wrist pain. American College of Radiology. ACR Appropriateness Criteria. Radiology. 2000;215:333–8.PubMedGoogle Scholar
  2. 2.
    Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, et al. SPECT/CT. J Nucl Med. 2008;49:1305–19. doi: 10.2967/jnumed.107.050195.PubMedCrossRefGoogle Scholar
  3. 3.
    Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging—part 1: hybrid imaging technologies and SPECT/CT. Insights Imaging. 2011;2:161–9. doi: 10.1007/s13244-010-0063-2 CrossRefGoogle Scholar
  4. 4.
    World Health Organization. The International Classification of Functioning, Disability and Health (ICF). Chapter 4: Mobility, d440: Fine hand use. Geneva: WHO; 2005.Google Scholar
  5. 5.
    Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37:1959–85. doi: 10.1007/s00259-010-1390-8.PubMedCrossRefGoogle Scholar
  6. 6.
    Cerezal L, del Pinal F, Abascal F, Garcia-Valtuille R, Pereda T, Canga A. Imaging findings in ulnar-sided wrist impaction syndromes. Radiographics. 2002;22:105–21.PubMedGoogle Scholar
  7. 7.
    Escobedo EM, Bergman AG, Hunter JC. MR imaging of ulnar impaction. Skeletal Radiol. 1995;24:85–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Epner RA, Bowers WH, Guilford WB. Ulnar variance – the effect of wrist positioning and roentgen filming technique. J Hand Surg Am. 1982;7:298–305.PubMedGoogle Scholar
  9. 9.
    Palmer AK, Glisson RR, Werner FW. Ulnar variance determination. J Hand Surg Am. 1982;7:376–9.PubMedGoogle Scholar
  10. 10.
    Friedman SL, Palmer AK, Short WH, Levinsohn EM, Halperin LS. The change in ulnar variance with grip. J Hand Surg Am. 1993;18:713–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Palmer AK. Triangular fibrocartilage complex lesions: a classification. J Hand Surg Am. 1989;14:594–606.PubMedCrossRefGoogle Scholar
  12. 12.
    Oneson SR, Scales LM, Timins ME, Erickson SJ, Chamoy L. MR imaging interpretation of the Palmer classification of triangular fibrocartilage complex lesions. Radiographics. 1996;16:97–106.PubMedGoogle Scholar
  13. 13.
    Beasley RW. Beasley's surgery of the hand. New York: Thieme; 2003. p. 376–7Google Scholar
  14. 14.
    Angelides AC. Ganglions of the hand and wrist. In: Green DP, Hotchkiss RN, Pederson WC, editors. Operative hand surgery. 4th ed. New York: Churchill Livingstone; 1999. p. 2171–83.Google Scholar
  15. 15.
    Nahra ME, Bucchieri JS. Open and arthroscopic excision of ganglion cysts and related tumors. In: Hunt TR, Wiesel SW, editors. Operative techniques in hand, wrist, and forearm surgery. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 918–29.Google Scholar
  16. 16.
    Nahra ME, Bucchieri JS. Ganglion cysts and other tumor related conditions of the hand and wrist. Hand Clin. 2004;20:249–60. doi: 10.1016/j.hcl.2004.03.015.PubMedCrossRefGoogle Scholar
  17. 17.
    Reichenbach S, Guermazi A, Niu J, Neogi T, Hunter DJ, Roemer FW, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthr Cartil. 2008;16:1005–10. doi: 10.1016/j.joca.2008.02.001.PubMedCrossRefGoogle Scholar
  18. 18.
    Buck FM, Hoffmann A, Hofer B, Pfirrmann CW, Allgayer B. Chronic medial knee pain without history of prior trauma: correlation of pain at rest and during exercise using bone scintigraphy and MR imaging. Skeletal Radiol. 2009;38:339–47. doi: 10.1007/s00256-008-0627-0.PubMedCrossRefGoogle Scholar
  19. 19.
    Harden RN, Bruehl S, Stanton-Hicks M, Wilson PR. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 2007;8:326–31. doi: 10.1111/j.1526-4637.2006.00169.x.PubMedCrossRefGoogle Scholar
  20. 20.
    Graif M, Schweitzer ME, Marks B, Matteucci T, Mandel S. Synovial effusion in reflex sympathetic dystrophy: an additional sign for diagnosis and staging. Skeletal Radiol. 1998;27:262–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Wuppenhorst N, Maier C, Frettloh J, Pennekamp W, Nicolas V. Sensitivity and specificity of 3-phase bone scintigraphy in the diagnosis of complex regional pain syndrome of the upper extremity. Clin J Pain. 2010;26:182–9. doi: 10.1097/AJP.0b013e3181c20207.PubMedCrossRefGoogle Scholar
  22. 22.
    Park SG, Hyun JK, Lee SJ, Jeon JY. Quantitative evaluation of very acute stage of complex regional pain syndrome after stroke using three-phase bone scintigraphy. Nucl Med Commun. 2007;28:766–70. doi: 10.1097/MNM.0b013e32828e513f.PubMedCrossRefGoogle Scholar
  23. 23.
    Zyluk A. The usefulness of quantitative evaluation of three-phase scintigraphy in the diagnosis of post-traumatic reflex sympathetic dystrophy. J Hand Surg Br. 1999;24:16–21.PubMedGoogle Scholar
  24. 24.
    Demangeat JL, Constantinesco A, Brunot B, Foucher G, Farcot JM. Three-phase bone scanning in reflex sympathetic dystrophy of the hand. J Nucl Med. 1988;29:26–32.PubMedGoogle Scholar
  25. 25.
    Oyen WJ, Arntz IE, Claessens RM, Van der Meer JW, Corstens FH, Goris RJ. Reflex sympathetic dystrophy of the hand: an excessive inflammatory response? Pain. 1993;55:151–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Greyson ND, Tepperman PS. Three-phase bone studies in hemiplegia with reflex sympathetic dystrophy and the effect of disuse. J Nucl Med. 1984;25:423–9.PubMedGoogle Scholar
  27. 27.
    Mackinnon SE, Holder LE. The use of three-phase radionuclide bone scanning in the diagnosis of reflex sympathetic dystrophy. J Hand Surg Am. 1984;9:556–63.PubMedGoogle Scholar
  28. 28.
    Harden RN, Bruehl SP. Diagnosis of complex regional pain syndrome: signs, symptoms, and new empirically derived diagnostic criteria. Clin J Pain. 2006;22:415–9. doi: 10.1097/01.ajp.0000194279.36261.3e.PubMedCrossRefGoogle Scholar
  29. 29.
    Borrero CG, Mountz JM, Mountz JD. Emerging MRI methods in rheumatoid arthritis. Nat Rev Rheumatol. 2011;7:85–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol. 2002;179:641–4.PubMedGoogle Scholar
  31. 31.
    Brunner MC, Flower SP, Evancho AM, Allman FL, Apple DF, Fajman WA. MRI of the athletic knee. Findings in asymptomatic professional basketball and collegiate football players. Invest Radiol. 1989;24:72–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Vanhoenacker FM, Snoeckx A. Bone marrow edema in sports: general concepts. Eur J Radiol. 2007;62:6–15. doi: 10.1016/j.ejrad.2007.01.013.PubMedCrossRefGoogle Scholar
  33. 33.
    Orr JD, Sabesan V, Major N, Nunley J. Painful bone marrow edema syndrome of the foot and ankle. Foot Ankle Int. 2010;31:949–53. doi: 10.3113/FAI.2010.0949.PubMedCrossRefGoogle Scholar
  34. 34.
    Fernandez-Canton G, Casado O, Capelastegui A, Astigarraga E, Larena JA, Merino A. Bone marrow edema syndrome of the foot: one year follow-up with MR imaging. Skeletal Radiol. 2003;32:273–8. doi: 10.1007/s00256-003-0622-4.PubMedCrossRefGoogle Scholar
  35. 35.
    Roemer FW, Bohndorf K. Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol. 2002;31:615–23. doi: 10.1007/s00256-002-0575-z.PubMedCrossRefGoogle Scholar
  36. 36.
    Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215:835–40.PubMedGoogle Scholar
  37. 37.
    Koo KH, Ahn IO, Song HR, Kim SY, Jones Jr JP. Increased perfusion of the femoral head in transient bone marrow edema syndrome. Clin Orthop Relat Res. 2002;(402):171–5.Google Scholar
  38. 38.
    Miller MD, Osborne JR, Gordon WT, Hinkin DT, Brinker MR. The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am J Sports Med. 1998;26:15–9.PubMedGoogle Scholar
  39. 39.
    Bretlau T, Tuxoe J, Larsen L, Jorgensen U, Thomsen HS, Lausten GS. Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc. 2002;10:96–101. doi: 10.1007/s00167-001-0272-9.PubMedCrossRefGoogle Scholar
  40. 40.
    Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy. 2001;17:445–9. doi: 10.1053/jars.2001.23581.PubMedCrossRefGoogle Scholar
  41. 41.
    Kruger T, Hug U, Hullner MW, Schleich F, Veit-Haibach P, von Wartburg U, et al. SPECT/CT arthrography of the wrist in ulnocarpal impaction syndrome. Eur J Nucl Med Mol Imaging. 2011;38:792. doi: 10.1007/s00259-010-1712-x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martin W. Huellner
    • 1
  • Alexander Bürkert
    • 1
  • Florian S. Schleich
    • 1
  • Maja Schürch
    • 2
  • Urs Hug
    • 2
  • Urs von Wartburg
    • 2
  • Klaus Strobel
    • 1
  • Patrick Veit-Haibach
    • 1
  1. 1.Department of Radiology and Nuclear MedicineLucerne Cantonal HospitalLucerneSwitzerland
  2. 2.Department of Hand and Plastic SurgeryLucerne Cantonal HospitalLucerneSwitzerland

Personalised recommendations