Feasibility and availability of 68Ga-labelled peptides

  • Clemens DecristoforoEmail author
  • Roger D. Pickett
  • Alfons Verbruggen
Review Article


68Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from 68Ge/68Ga generators, making it independent of cyclotron production. 68Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of 68Ga-labelled peptides, including generator technology, 68Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. 68Ge/68Ga generators based on SnO2, TiO2 or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for 68Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of 68Ga-labelled peptides outside the marketing authorization track are also discussed.


68Ga 68Ge/68Ga generator Radiolabelled peptides Postprocessing Automated synthesis 



The assistance of Dr B.J. McParland with dosimetry calculations is acknowledged

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Deutsch E. Clinical PET: its time has come? J Nucl Med. 1993;34:1132–3.PubMedGoogle Scholar
  2. 2.
    Maecke HR, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging. J Nucl Med. 2005;46 Suppl 1:172S–8S.PubMedGoogle Scholar
  3. 3.
    Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42:1053–6.PubMedGoogle Scholar
  6. 6.
    Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.PubMedCrossRefGoogle Scholar
  7. 7.
    Meinken GE, Kurczak SM, Kolsky KL, Srivastava SC. Production of high specific activity 68Ge at Brookhaven National laboratory. J Radioanal Nucl Chem. 2005;263:553–7.Google Scholar
  8. 8.
    Gleason GI. A positron cow. Int J Appl Radiat Isot. 1960;8:90–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Yano Y, Anger HO. A gallium-68 positron cow for medical use. J Nucl Med. 1964;5:484–7.PubMedGoogle Scholar
  10. 10.
    Mirzadeh S, Lambrecht R. Radiochemistry of germanium. J Radioanal Nucl Chem. 1996;202:7–102.CrossRefGoogle Scholar
  11. 11.
    Roesch F, Riss PJ. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10:1633–68.PubMedGoogle Scholar
  12. 12.
    Fani M, Andre JP, Maecke HR. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging. 2008;3:67–77.PubMedCrossRefGoogle Scholar
  13. 13.
    Loc’h C, Maziere B, Comar D. A new generator for ionic gallium-68. J Nucl Med. 1980;21:171–3.PubMedGoogle Scholar
  14. 14.
    de Blois E, Sze Chan H, Naidoo C, Prince D, Krenning EP, Breeman WA. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot. 2011;69:308–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Razbash AA. A simple gallium-68 generator. Eur J Nucl Med Mol Imaging. 2003;30 Suppl 2:S318.Google Scholar
  16. 16.
    Bao B, Song MA. New 68Ge/68Ga generator based on CeO2. J Radioanal Nucl Chem. 1996;213:233–8.CrossRefGoogle Scholar
  17. 17.
    Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M. Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl Med Biol. 2011;38:575–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Schuhmacher J, Maier-Borst W. A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot. 1981;32:31–6.CrossRefGoogle Scholar
  19. 19.
    Zhernosekov K, Harfensteller M, Moreno J, Leib O, Buck O, Tuerler A, et al. Development of a novel metal-free 68Ge/68Ga radionuclide generator system. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 2:S251.Google Scholar
  20. 20.
    Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32:478–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Loktionova NS, Rösch F. Separation of 68Ga and 68Ge on TLC plate. World J Nucl Med. 2011;10:80Google Scholar
  23. 23.
    ICRP. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30 (Part 3). Ann ICRP. 6 (2-3).Google Scholar
  24. 24.
    Konijnenberg M, Breeman WA (2009) Estimates for the biodistribution and dosimetry of 68Ge in 68Ga PET imaging. J Lab Comp Radiopharm 52 Suppl 1:S116.Google Scholar
  25. 25.
    Rosenfeld G. Studies of the metabolism of germanium. Arch Biochem Biophys. 1954;48:84–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Mehard CW, Volcani BE. Similarity in uptake and retention of trace amounts of 31 silicon and 68 germanium in rat tissues and cell organelles. Bioinorg Chem. 1975;5:107–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Sabbioni E, Fortaner S, Bosisio S, Farina M, Del Torchio R, Edel J, et al. Metabolic fate of ultratrace levels of GeCl(4) in the rat and in vitro studies on its basal cytotoxicity and carcinogenic potential in Balb/3T3 and HaCaT cell lines. J Appl Toxicol. 2010;30:34–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Ando A, Ando I, Hiraki T, Hisada K. Relation between the location of elements in the periodic table and various organ-uptake rates. Int J Rad Appl Instrum B. 1989;16:57–80.PubMedGoogle Scholar
  29. 29.
    Shearer DR, Pezzullo JC, Moore MM, Coleman P, Frater SI. Radiation dose from radiopharmaceuticals contaminated with molybdenum-99. J Nucl Med. 1988;29:695–700.PubMedGoogle Scholar
  30. 30.
    US Food and Drug Administration. FDA Drug Safety Communication: Increased radiation exposure due to undetected strontium breakthrough when using CardioGen-82 for cardiac positron emission tomography (PET) scans. US Food and Drug Administration; 2011. Accessed 19 Nov 2011.
  31. 31.
    Meyer GJ, Macke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004;31:1097–104.PubMedCrossRefGoogle Scholar
  32. 32.
    Velikyan I, Beyer GJ, Langstrom B. Microwave-supported preparation of (68)Ga bioconjugates with high specific radioactivity. Bioconjug Chem. 2004;15:554–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Commun. 2007;28:870–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Petrik M, Ocak M, Rupprich M, Decristoforo C. Impurity in (68)Ga-peptide preparation using processed generator eluate. J Nucl Med. 2010;51:495; author reply 495−6.PubMedCrossRefGoogle Scholar
  35. 35.
    Müller D, Klette I, Baum RP. A new high efficient NaCl base cationic 68Ge/68Ga generator eluate purification. World J Nucl Med. 2011;10:77.Google Scholar
  36. 36.
    Bauwens M, Chekol R, Vanbilloen H, Bormans G, Verbruggen A. Optimal buffer choice of the radiosynthesis of (68)Ga-Dotatoc for clinical application. Nucl Med Commun. 2010;31:753–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Asti M, De Pietri G, Fraternali A, Grassi E, Sghedoni R, Fioroni F, et al. Validation of (68)Ge/(68)Ga generator processing by chemical purification for routine clinical application of (68)Ga-DOTATOC. Nucl Med Biol. 2008;35:721–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Ocak M, Antretter M, Knopp R, Kunkel F, Petrik M, Bergisadi N, et al. Full automation of (68)Ga labelling of DOTA-peptides including cation exchange prepurification. Appl Radiat Isot. 2010;68:297–302.PubMedCrossRefGoogle Scholar
  39. 39.
    Cagnolini A, Chen J, Ramos K, Skedzielewski TM, Lantry LE, Nunn AD, et al. Automated synthesis, characterization and biological evaluation of [(68)Ga]Ga-AMBA, and the synthesis and characterization of (nat)Ga-AMBA and [(67)Ga]Ga-AMBA. Appl Radiat Isot. 2010;68:2285–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Petrik M, Knetsch P.A, Knopp R, Imperato G, Ocak M, von Guggenberg E, et al. Radiolabelling of peptides for PET, SPECT and therapeutic applications using a fully automated disposable cassette system. Nucl Med Commun. 2011;32:887–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem. 2008;19:569–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Notni J, Hermann P, Havlickova J, Kotek J, Kubicek V, Plutnar J, et al. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chemistry. 2010;16:7174–85.PubMedGoogle Scholar
  43. 43.
    Rosch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40:6104–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Fani M, Del Pozzo L, Abiraj K, Mansi R, Tamma ML, Cescato R, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52:1110–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2011;38:1303–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Breeman WA, Verbruggen AM. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging. 2007;34:978–81.PubMedCrossRefGoogle Scholar
  48. 48.
    European Directorate for the Quality of Medicines. Gallium (68Ga) edotreotide injection. Pharmeuropa. 2011;23:310–2.Google Scholar
  49. 49.
    Hesselmann R, Johayem A, Özdemir U, Dragic M, Blainc A, Mu L, et al. Improving radiochemical purity and quality control of 68Ga-DOTATATE. World J Nucl Med. 2011;10:84.Google Scholar
  50. 50.
    Velikyan I, Beyer GJ, Bergstrom-Pettermann E, Johansen P, Bergstrom M, Langstrom B. The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. Nucl Med Biol. 2008;35:529–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Serdons K, Verbruggen A, Bormans G. The presence of ethanol in radiopharmaceutical injections. J Nucl Med. 2008;49:2071.PubMedCrossRefGoogle Scholar
  52. 52.
    The European Parliament and of the Council of the European Union. Directive 2004/27/EC of the European Parliament and the Council of 31 March 2004 amending Directive 2001/83/EC on the Community code relating to medicinal products for human use. Official Journal. L136;2004:34–57.Google Scholar
  53. 53.
    Verbruggen A, Coenen HH, Deverre JR, Guilloteau D, Langstrom B, Salvadori PA, et al. Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging. 2008;35:2144–51.PubMedCrossRefGoogle Scholar
  54. 54.
    Decristoforo A, Penuelas I. Towards a harmonized radiopharmaceutical regulatory framework in Europe? Q J Nucl Med Mol Imaging. 2009;53:394–401.PubMedGoogle Scholar
  55. 55.
    EudraLex. The rules governing medicinal products in the European Union. Volume 4: EU guidelines to good manufacturing practice medicinal products for human and veterinary use. Part II: basic requirements for active substances used as starting materials. 2005.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Clemens Decristoforo
    • 1
    • 4
    Email author
  • Roger D. Pickett
    • 2
    • 4
  • Alfons Verbruggen
    • 3
    • 4
  1. 1.Department of Nuclear MedicineInnsbruck Medical UniversityInnsbruckAustria
  2. 2.GE HealthcareLittle ChalfontUK
  3. 3.Laboratory of Radiopharmacy, Department of Pharmaceutical SciencesUniversity of LeuvenLeuvenBelgium
  4. 4.Group 14, Radioactive Compounds, The European PharmacopeiaEuropean Directorate of Quality of MedicinesStrasbourgFrance

Personalised recommendations