Gallium-labelled peptides for imaging of inflammation

  • Anne RoivainenEmail author
  • Sirpa Jalkanen
  • Cristina Nanni
Review Article


Inflammation plays a major role in the development of many diseases. This review article summarizes recent research in the field of in vivo imaging of inflammation. Novel methodologies using PET with 68Ga peptides targeting, for example, vascular adhesion protein 1 are discussed.


DOTA peptide Gallium-68 Inflammation Infection PET RGD Vascular adhesion protein 1 



We thank Anu Autio, Petteri Lankinen, Tatu Mäkinen, Tiina Saanijoki, Johanna Silvola (née Haukkala), and Tiina Ujula for providing data and figures. The PET studies reviewed involving VAP-1-targeting tracers and 68Ga-DOTA-RGD peptide were conducted at the Finnish Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research supported by the Academy of Finland, the University of Turku, the Turku University Hospital and the Åbo Akademi University.

Conflicts of interest



  1. 1.
    Stephenson TJ. Inflammation. In: Underwood JCE, editor. General and systematic pathology. London: Elsevier; 2004. p. 202–20.Google Scholar
  2. 2.
    Boerman OC, Dams ET, Oyen WJ, Corstens FH, Storm G. Radiopharmaceuticals for scintigraphic imaging of infection and inflammation. Inflamm Res. 2001;50:55–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Rennen HJ, Boerman OC, Oyen WJ, Corstens FH. Imaging infection/inflammation in the new millennium. Eur J Nucl Med. 2001;28:241–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Goldsmith SJ, Vallabhajosula S. Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Semin Nucl Med. 2009;39:2–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science. 1992;257:1407–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Salmi M, Tohka S, Berg EL, Butcher EC, Jalkanen S. Vascular adhesion protein 1 (VAP-1) mediates lymphocyte subtype-specific, selectin-independent recognition of vascular endothelium in human lymph nodes. J Exp Med. 1997;186:589–600.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaakkola K, Nikula T, Holopainen R, Vähäsilta T, Matikainen MT, Laukkanen ML, et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol. 2000;157:463–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Salmi M, Kalimo K, Jalkanen S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J Exp Med. 1993;178:2255–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Marttila-Ichihara F, Smith DJ, Stolen C, Yegutkin GG, Elima K, Mercier N, et al. Vascular amine oxidases are needed for leukocyte extravasation into inflamed joints in vivo. Arthritis Rheum. 2006;54:2852–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Salmi M, Yegutkin GG, Lehvonen R, Koskinen K, Salminen T, Jalkanen S. A cell surface amine oxidase directly controls lymphocyte migration. Immunity. 2001;14:265–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Madej A, Reich A, Orda A, Szepietowski JC. Vascular adhesion protein-1 (VAP-1) is overexpressed in psoriatic patients. J Eur Acad Dermatol Venereol. 2007;21:72–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Salmi M, Jalkanen S. VAP-1: an adhesin and an enzyme. Trends Immunol. 2001;22:211–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol. 2005;5:760–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Wakelam MJ, Adams DH. Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion. Hepatology. 2007;45:465–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, et al. The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood. 2007;110:1864–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Lankinen P, Mäkinen TJ, Pöyhönen TA, Virsu P, Salomäki S, Hakanen AJ, et al. (68)Ga-DOTAVAP-P1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones. Eur J Nucl Med Mol Imaging. 2008;35:352–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Ujula T, Salomäki S, Virsu P, Lankinen P, Mäkinen TJ, Autio A, et al. Synthesis, 68Ga labeling and preliminary evaluation of DOTA peptide binding vascular adhesion protein-1: a potential PET imaging agent for diagnosing osteomyelitis. Nucl Med Biol. 2009;36:631–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Autio A, Ujula T, Luoto P, Salomäki S, Jalkanen S, Roivainen A. PET imaging of inflammation and adenocarcinoma xenografts using vascular adhesion protein 1 targeting peptide (68)Ga-DOTAVAP-P1: comparison with (18)F-FDG. Eur J Nucl Med Mol Imaging. 2010;37:1918–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Silvola J, Autio A, Luoto P, Jalkanen S, Roivainen A. Preliminary evaluation of novel 68Ga-DOTAVAP-PEG-P2 peptide targeting vascular adhesion protein-1. Clin Physiol Funct Imaging. 2010;30:75–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ, et al. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood. 2011;118:3725–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Autio A, Henttinen T, Sipilä HJ, Jalkanen S, Roivainen A. Mini-PEG spacering of VAP-1-targeting 68Ga-DOTAVAP-P1 peptide improves PET imaging of inflammation. EJNMMI Res. 2011;1:10.PubMedCrossRefGoogle Scholar
  22. 22.
    Yegutkin GG, Salminen T, Koskinen K, Kurtis C, McPherson MJ, Jalkanen S, et al. A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol. 2004;34:2276–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Stolen CM, Marttila-Ichihara F, Koskinen K, Yegutkin GG, Turja R, Bono P, et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity. 2005;22:105–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Marttila-Ichihara F, Auvinen K, Elima K, Jalkanen S, Salmi M. Vascular adhesion protein-1 enhances tumor growth by supporting recruitment of Gr-1+ CD11b+ myeloid cells into tumors. Cancer Res. 2009;69:7875–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Mäkinen TJ, Lankinen P, Pöyhönen T, Jalava J, Aro HT, Roivainen A. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging. 2005;32:1259–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Irjala H, Salmi M, Alanen K, Grénman R, Jalkanen S. Vascular adhesion protein 1 mediates binding of immunotherapeutic effector cells to tumor endothelium. J Immunol. 2001;166:6937–43.PubMedGoogle Scholar
  27. 27.
    Yoong KF, McNab G, Hübscher SG, Adams DH. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol. 1998;160:3978–88.PubMedGoogle Scholar
  28. 28.
    Danese S, Sans M, de la Motte C, Graziani C, West G, Phillips MH, et al. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology. 2006;130:2060–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilder RL. Integrin αvβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis. 2002;61:ii96–9.PubMedGoogle Scholar
  30. 30.
    Cao Q, Cai W, Li ZB, Chen K, He L, Li HC, et al. PET imaging of acute and chronic inflammation in living mice. Eur J Nucl Med Mol Imaging. 2007;34:1832–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm. 2006;3:472–87.PubMedCrossRefGoogle Scholar
  32. 32.
    Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, et al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2008;35:1507–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2011;38:1303–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen W, Bural GG, Torigian DA, Rader DJ, Alavi A. Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2009;36:144–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Laitinen I, Marjamäki P, Haaparanta M, Savisto N, Laine VJ, Soini SL, et al. Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging. 2006;33:1461–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Haukkala J, Laitinen I, Luoto P, Iveson P, Wilson I, Karlsen H, et al. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice. Eur J Nucl Med Mol Imaging. 2009;36:2058–67.CrossRefGoogle Scholar
  37. 37.
    Ambrosini V, Campana D, Bodei L, Nanni C, Castellucci P, Allegri V, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med. 2010;51:669–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Pettinato C, Sarnelli A, Di Donna M, Civollani S, Nanni C, Montini G, et al. 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2008;35:72–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Ambrosini V, Zompatori M, De Luca F, Antonia D, Allegri V, Nanni C, et al. 68Ga-DOTANOC PET/CT allows somatostatin receptor imaging in idiopathic pulmonary fibrosis: preliminary results. J Nucl Med. 2010;51:1950–55.PubMedCrossRefGoogle Scholar
  41. 41.
    El-Maghraby TA, Moustafa HM, Pauwels EK. Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q J Nucl Med Mol Imaging. 2006;50:167–92.PubMedGoogle Scholar
  42. 42.
    Ehrhardt GJ, Welch MJ. A new germanium-63/gallium-68 generator. J Nucl Med. 1978;19:925–9.PubMedGoogle Scholar
  43. 43.
    Ambrosini V, Nanni C, Zompatori M, Campana D, Tomassetti P, Castellucci P, et al. (68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2010;37:722–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Nanni C, Errani C, Boriani L, Fantini L, Ambrosini V, Boschi S, et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2010;51:1932–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Silvola J, Laitinen I, Sipilä H, Laine VJO, Leppänen P, Ylä-Herttuala S, et al. Uptake of 68gallium in atherosclerotic plaques in LDLR−/− ApoB100/100 mice. EJNMMI Res. 2011;1:14.PubMedCrossRefGoogle Scholar
  46. 46.
    Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51:639–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anne Roivainen
    • 1
    • 2
    Email author
  • Sirpa Jalkanen
    • 3
    • 4
  • Cristina Nanni
    • 5
  1. 1.Turku PET CentreUniversity of Turku and Turku University HospitalTurkuFinland
  2. 2.Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
  3. 3.MediCity Research LaboratoryUniversity of TurkuTurkuFinland
  4. 4.Department of Medical Microbiology and ImmunologyUniversity of TurkuTurkuFinland
  5. 5.UO Medicina NucleareAzienda Ospedaliero-Universitaria S.Orsola MalpighiBolognaItaly

Personalised recommendations