Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours

  • Nils F. SchreiterEmail author
  • Winfried Brenner
  • Munenobu Nogami
  • Ralph Buchert
  • Alexander Huppertz
  • Ulrich-Frank Pape
  • Vikas Prasad
  • Bernd Hamm
  • Martin H. Maurer
Original Article



Although somatostatin receptor positron emission tomography (PET)/CT is gaining increasing popularity and has shown its diagnostic superiority in several studies, 111In-diethylenetriaminepentaacetic acid (DTPA)-octreotide is still the current standard for diagnosis of neuroendocrine tumours (NET). The aim of this study was to compare the costs for the two diagnostic tests and the respective consequential costs.


From January 2009 to July 2009, 51 consecutive patients with enteropancreatic NET who underwent contrast-enhanced 68Ga-DOTATOC PET/CT (n = 29) or 111In-DTPA-octreotide (mean 3 whole-body scans plus 1.6 low-dose single photon emission computed tomography/CT; n = 22) were included. For cost analysis, direct costs (equipment) and variable costs (material, labour) per examination were calculated. Additionally required CT and/or MRI examinations within the staging process were assessed as consequential costs. An additional deterministic sensitivity analysis was performed.


A 68Ga-DOTATOC PET/CT examination yielded total costs (equipment, personnel and material costs) of 548 €. On the other hand, an 111In-DTPA-octreotide examination resulted in 827 € total costs. Costs for equipment and material had a share of 460 €/720 € for 68Ga-DOTATOC/111In-DTPA-octreotide and labour costs of 89 €/106 €. With 68Ga-DOTATOC additional MRI had to be performed in 7% of the patients resulting in a mean of 20 € for supplementary imaging per patient; 82% of patients with 111In-DTPA-octreotide needed additional MRI and/or CT resulting in mean additional costs of 161 € per patient.


68Ga-DOTATOC PET/CT was considerably cheaper than 111In-DTPA-octreotide with respect to both material and personnel costs. Furthermore, by using 68Ga-DOTATOC PET/CT considerably fewer additional examinations were needed reducing the consequential costs significantly.


Cost evaluation 68Ga-DOTATOC PET/CT 111In-DTPA-octreotide scintigraphy 


Conflicts of interest



  1. 1.
    Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003;97(4):934–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Klöppel G, Couvelard A, Perren A, Komminoth P, McNicol AM, Nilsson O, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology 2009;90(2):162–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Rambaldi PF, Cuccurullo V, Briganti V, Mansi L. The present and future role of (111)In pentetreotide in the PET era. Q J Nucl Med Mol Imaging 2005;49(3):225–35.PubMedGoogle Scholar
  4. 4.
    Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20(8):716–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Bombardieri E, Ambrosini V, Aktolun C, Baum RP, Bishof-Delaloye A, Del Vecchio S, et al. 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37(7):1441–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Kowalski J, Henze M, Schuhmacher J, Mäcke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 2003;5(1):42–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007;34(10):1617–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Hartmann H, Zöphel K, Freudenberg R, Oehme L, Andreeff M, Wunderlich G, et al. Radiation exposure of patients during 68Ga-DOTATOC PET/CT examinations. Nuklearmedizin 2009;48(5):201–7.PubMedGoogle Scholar
  9. 9.
    Gocke P, Debatin JF, Dürselen LF. Process management and controlling in diagnostic radiology in the hospital. Radiologe 2002;42(5):332–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Balon HR, Goldsmith SJ, Siegel BA, Silberstein EB, Krenning EP, Lang O, et al. Procedure guideline for somatostatin receptor scintigraphy with (111)In-pentetreotide. J Nucl Med 2001;42(7):1134–8.PubMedGoogle Scholar
  11. 11.
    Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med 2007;48(10):1741–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008;26(18):3063–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Kocha W, Maroun J, Kennecke H, Law C, Metrakos P, Ouellet JF, et al. Consensus recommendations for the diagnosis and management of well-differentiated gastroenterohepatic neuroendocrine tumours: a revised statement from a Canadian National Expert Group. Curr Oncol 2010;17(3):49–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Janson ET, Sørbye H, Welin S, Federspiel B, Grønbaek H, Hellman P, et al. Nordic Guidelines 2010 for diagnosis and treatment of gastroenteropancreatic neuroendocrine tumours. Acta Oncol 2010;49(6):740–56.PubMedCrossRefGoogle Scholar
  15. 15.
    Arnold R, Chen YJ, Costa F, Falconi M, Gross D, Grossman AB, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: follow-up and documentation. Neuroendocrinology 2009;90(2):227–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Sundin A, Vullierme MP, Kaltsas G, Plöckinger U, Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology 2009;90(2):167–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Plathow C, Walz M, Lichy MP, Aschoff P, Pfannenberg C, Bock H, et al. Cost considerations for whole-body MRI and PET/CT as part of oncologic staging. Radiologe 2008;48(4):384–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Schmidt GP, Haug AR, Schoenberg SO, Reiser MF. Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 2006;16(6):1216–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Baum RP, Prasad V, Hörsch D. Molekulare Bildgebung neuroendokriner Tumoren mit 68Ga-markierten Peptiden (Somatostatinrezeptor-PET/CT). Nuklearmediziner 2009;32:115–30.CrossRefGoogle Scholar
  20. 20.
    Krenning EP, Bakker WH, Breeman WA, Koper JW, Kooij PP, Ausema L, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1989;1(8632):242–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 1992;33(5):652–8.PubMedGoogle Scholar
  22. 22.
    Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide–a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 1994;35(2):317–25.PubMedGoogle Scholar
  23. 23.
    de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0, d-Phe1, Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997;24(4):368–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Otte A, Mueller-Brand J, Dellas S, Nitzsche EU, Herrmann R, Maecke HR. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 1998;351(9100):417–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 2007;34(7):982–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Ruf J, Heuck F, Schiefer J, Denecke T, Elgeti F, Pascher A, et al. Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 2010;91(1):101–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48(4):508–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Krausz Y, Freedman N, Rubinstein R, Lavie E, Orevi M, Tshori S, et al. (68)Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with (111)In-DTPA-octreotide (OctreoScan®). Mol Imaging Biol 2011;13(3):583–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nils F. Schreiter
    • 1
    Email author
  • Winfried Brenner
    • 1
  • Munenobu Nogami
    • 2
  • Ralph Buchert
    • 1
  • Alexander Huppertz
    • 3
  • Ulrich-Frank Pape
    • 4
  • Vikas Prasad
    • 1
  • Bernd Hamm
    • 5
  • Martin H. Maurer
    • 5
  1. 1.Department of Nuclear MedicineCharité – Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of Radiology and Nuclear MedicineUniversity HospitalNankoku, KochiJapan
  3. 3.Imaging Science Institute Charité BerlinBerlinGermany
  4. 4.Department of GastroenterologyCharité – Universitätsmedizin BerlinBerlinGermany
  5. 5.Department of RadiologyCharité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations