Imaging the islet graft by positron emission tomography

Review Article


Clinical islet transplantation is being investigated as a permanent cure for type 1 diabetes mellitus (T1DM). Currently, intraportal infusion of islets is the favoured procedure, but several novel implantation sites have been suggested. Noninvasive longitudinal methodologies are an increasingly important tool for assessing the fate of transplanted islets, their mass, function and early signs of rejection. This article reviews the approaches available for islet graft imaging by positron emission tomography and progress in the field, as well as future challenges and opportunities.


Islet transplantation Islet imaging Rejection Beta cell mass Positron emission tomography 


  1. 1.
    Shapiro J. Eighty years after insulin: parallels with modern islet transplantation. CMAJ. 2002;167(12):1398–400.PubMedGoogle Scholar
  2. 2.
    Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R, et al. Current status of clinical islet transplantation. Transplantation. 2005;79(10):1289–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Goto M, Eich TM, Felldin M, Foss A, Kallen R, Salmela K, et al. Refinement of the automated method for human islet isolation and presentation of a closed system for in vitro islet culture. Transplantation. 2004;78(9):1367–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Rickels MR, Schutta MH, Markmann JF, Barker CF, Naji A, Teff KL. {beta}-Cell function following human islet transplantation for type 1 diabetes. Diabetes. 2005;54(1):100–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes. 1999;48(10):1907–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet. 2002;360(9350):2039–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A, et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes. 2005;54(6):1755–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirshberg B, Montgomery S, Wysoki MG, Xu H, Tadaki D, Lee J, et al. Pancreatic islet transplantation using the nonhuman primate (rhesus) model predicts that the portal vein is superior to the celiac artery as the islet infusion site. Diabetes. 2002;51(7):2135–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Berney T, Toso C. Monitoring of the islet graft. Diabetes Metab. 2006;32(5 Pt 2):503–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Christoffersson G, Henriksnas J, Johansson L, Rolny C, Ahlstrom H, Caballero-Corbalan J, et al. Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets. Diabetes. 2010;59(10):2569–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Kallskog O, Kampf C, Andersson A, Carlsson PO, Hansell P, Johansson M, et al. Lymphatic vessels in pancreatic islets implanted under the renal capsule of rats. Am J Transplant. 2006;6(4):680–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Korsgren O, Nilsson B. Improving islet transplantation: a road map for a widespread application for the cure of persons with type I diabetes. Curr Opin Organ Transplant. 2009;14(6):683–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Perez VL, Caicedo A, Berman DM, Arrieta E, Abdulreda MH, Rodriguez-Diaz R, et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia. 2011;54(5):1121–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Leibiger IB, Caicedo A, Berggren PO. Non-invasive in vivo imaging of pancreatic beta-cell function and survival – a perspective. Acta Physiol (Oxf). 2011. doi:10.1111/j.1748-1716.2011.02301.x
  17. 17.
    Kakabadze Z, Gupta S, Brandhorst D, Korsgren O, Berishvili E. Long-term engraftment and function of transplanted pancreatic islets in vascularized segments of small intestine. Transpl Int. 2011;24(2):175–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Paty BW, Bonner-Weir S, Laughlin MR, McEwan AJ, Shapiro AM. Toward development of imaging modalities for islets after transplantation: insights from the National Institutes of Health Workshop on Beta Cell Imaging. Transplantation. 2004;77(8):1133–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8(3):701–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A. In vivo imaging of islet transplantation. Nat Med. 2006;12(1):144–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Medarova Z, Moore A. MRI as a tool to monitor islet transplantation. Nat Rev Endocrinol. 2009;5(8):444–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Toso C, Zaidi H, Morel P, Armanet M, Andres A, Pernin N, et al. Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation. 2005;79(3):353–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Eich T, Eriksson O, Sundin A, Estrada S, Brandhorst D, Brandhorst H, et al. Positron emission tomography: a real-time tool to quantify early islet engraftment in a preclinical large animal model. Transplantation. 2007;84(7):893–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Eich T, Eriksson O, Lundgren T. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med. 2007;356(26):2754–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Eriksson O, Eich T, Sundin A, Tibell A, Tufveson G, Andersson H, et al. Positron emission tomography in clinical islet transplantation. Am J Transplant. 2009;9(12):2816–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA. Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther. 2004;6(5):652–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Ichise M, Harris PE. Imaging of beta-cell mass and function. J Nucl Med. 2010;51(7):1001–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A. VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Mol Med. 2008;86(1):5–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Veluthakal R, Harris P. In vivo beta-cell imaging with VMAT 2 ligands – current state-of-the-art and future perspective. Curr Pharm Des. 2010;16(14):1568–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Anlauf M, Schafer MK, Schwark T, von Wurmb-Schwark N, Brand V, Sipos B, et al. Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem. 2006;54(2):201–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Weihe E, Eiden LE. Chemical neuroanatomy of the vesicular amine transporters. FASEB J. 2000;14(15):2435–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Eiden LE. The vesicular neurotransmitter transporters: current perspectives and future prospects. FASEB J. 2000;14(15):2396–400.PubMedCrossRefGoogle Scholar
  33. 33.
    Anlauf M, Eissele R, Schafer MK, Eiden LE, Arnold R, Pauser U, et al. Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem. 2003;51(8):1027–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Weihe E, Schafer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci. 1994;5(3):149–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Frey KA, Koeppe RA, Kilbourn MR. Imaging the vesicular monoamine transporter. Adv Neurol. 2001;86:237–47.PubMedGoogle Scholar
  36. 36.
    Goland R, Freeby M, Parsey R, Saisho Y, Kumar D, Simpson N, et al. 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med. 2009;50(3):382–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Fagerholm V, Mikkola KK, Ishizu T, Arponen E, Kauhanen S, Nagren K, et al. Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med. 2010;51(9):1439–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Simpson NR, Souza F, Witkowski P, Maffei A, Raffo A, Herron A, et al. Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol. 2006;33(7):855–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C, et al. In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol. 2010;37(3):357–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E, et al. In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med. 2008;49(7):1171–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin KJ, Weng YH, Wey SP, Hsiao IT, Lu CS, Skovronsky D, et al. Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med. 2010;51(9):1480–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Tsao HH, Lin KJ, Juang JH, Skovronsky DM, Yen TC, Wey SP, et al. Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenazine (AV-133) to the vesicular monoamine transporter type 2 in rats. Nucl Med Biol. 2010;37(4):413–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Kwee TC, Basu S, Saboury B, Torigian DA, Naji A, Alavi A. Beta-cell imaging: opportunities and limitations. J Nucl Med. 2011;52(3):493; author reply 493–5.CrossRefGoogle Scholar
  44. 44.
    Tornehave D, Kristensen P, Romer J, Knudsen LB, Heller RS. Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J Histochem Cytochem. 2008;56(9):841–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Korner M, Stockli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48(5):736–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Gotthardt M, Fischer M, Naeher I, Holz JB, Jungclas H, Fritsch HW, et al. Use of the incretin hormone glucagon-like peptide-1 (GLP-1) for the detection of insulinomas: initial experimental results. Eur J Nucl Med Mol Imaging. 2002;29(5):597–606.PubMedCrossRefGoogle Scholar
  47. 47.
    Wild D, Behe M, Wicki A, Storch D, Waser B, Gotthardt M, et al. [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med. 2006;47(12):2025–33.PubMedGoogle Scholar
  48. 48.
    Brom M, Oyen WJ, Joosten L, Gotthardt M, Boerman OC. 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. Eur J Nucl Med Mol Imaging. 2010;37(7):1345–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Wu Z, Todorov I, Li L, Bading J, Li Z, Nair I, et al. In vivo imaging of transplanted islets with (64)Cu-DO3A-VS-Cys(40)-exendin-4 by targeting GLP-1 receptor. Bioconjug Chem. 2011;22(8):1587–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Wallen AR, Marcum ES, et al. Systematic screening of potential beta-cell imaging agents. Biochem Biophys Res Commun. 2004;314(4):976–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Wangler B, Schneider S, Thews O, Schirrmacher E, Comagic S, Feilen P, et al. Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol. 2004;31(5):639–47.PubMedCrossRefGoogle Scholar
  52. 52.
    Schmitz A, Shiue CY, Feng Q, Shiue GG, Deng S, Pourdehnad MT, et al. Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol. 2004;31(4):483–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49(4):573–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Minn H, Kauhanen S, Seppanen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50(12):1915–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Garcia A, Mirbolooki MR, Constantinescu C, Pan ML, Sevrioukov E, Milne N, et al. 18F-Fallypride PET of pancreatic islets: in vitro and in vivo rodent studies. J Nucl Med. 2011;52(7):1125–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26(9):1489–95.PubMedCrossRefGoogle Scholar
  57. 57.
    Witkowski P, Sondermeijer H, Hardy MA, Woodland DC, Lee K, Bhagat G, et al. Islet grafting and imaging in a bioengineered intramuscular space. Transplantation. 2009;88(9):1065–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Pattou F, Kerr-Conte J, Wild D. GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. N Engl J Med. 2010;363(13):1289–90.PubMedCrossRefGoogle Scholar
  59. 59.
    Cabric S, Sanchez J, Johansson U, Larsson R, Nilsson B, Korsgren O, et al. Anchoring of vascular endothelial growth factor to surface-immobilized heparin on pancreatic islets: implications for stimulating islet angiogenesis. Tissue Eng Part A. 2010;16(3):961–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Cabric S, Sanchez J, Lundgren T, Foss A, Felldin M, Kallen R, et al. Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes. 2007;56(8):2008–15.PubMedCrossRefGoogle Scholar
  61. 61.
    Cabric S, Eich T, Sanchez J, Nilsson B, Korsgren O, Larsson R, et al. A new method for incorporating functional heparin onto the surface of islets of Langerhans. Tissue Eng Part C. 2008;14(2):141–7.CrossRefGoogle Scholar
  62. 62.
    Najafi A, Peterson A. Preparation and in vitro evaluation of “no-carrier-added” 18F-labeled biotin. Nucl Med Biol. 1993;20(4):401–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Shoup TM, Fischman AJ, Jaywook S, Babich JW, Strauss HW, Elmaleh DR. Synthesis of fluorine-18-labeled biotin derivatives: biodistribution and infection localization. J Nucl Med. 1994;35(10):1685–90.PubMedGoogle Scholar
  64. 64.
    Blom E, Langstrom B, Velikyan I. 68Ga-labeling of biotin analogues and their characterization. Bioconjug Chem. 2009;20(6):1146–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Min JJ, Gambhir SS. Molecular imaging of PET reporter gene expression. Handb Exp Pharmacol. 2008;185(2):277–303.PubMedCrossRefGoogle Scholar
  66. 66.
    Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA. 1999;96(5):2333–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim SJ, Doudet DJ, Studenov AR, Nian C, Ruth TJ, Gambhir SS, et al. Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med. 2006;12(12):1423–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Stout DB, et al. Noninvasive imaging of islet grafts using positron-emission tomography. Proc Natl Acad Sci USA. 2006;103(30):11294–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Lu Y, Dang H, Middleton B, Campbell-Thompson M, Atkinson MA, Gambhir SS, et al. Long-term monitoring of transplanted islets using positron emission tomography. Mol Ther. 2006;14(6):851–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim SJ, Nian C, Doudet DJ, McIntosh CH. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes. 2008;57(5):1331–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Yong J, Rasooly J, Dang H, Lu Y, Middleton B, Zhang Z, et al. Multimodality imaging of β-cells in mouse models of type 1 and 2 diabetes. Diabetes. 2011;60(5):1383–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Goldenberg DM, Sharkey RM. Novel radiolabeled antibody conjugates. Oncogene. 2007;26(25):3734–44.PubMedCrossRefGoogle Scholar
  73. 73.
    Goldenberg DM, Rossi EA, Sharkey RM, McBride WJ, Chang CH. Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med. 2008;49(1):158–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Gruaz-Guyon A, Raguin O, Barbet J. Recent advances in pretargeted radioimmunotherapy. Curr Med Chem. 2005;12(3):319–38.PubMedGoogle Scholar
  75. 75.
    Kudo T, Ueda M, Konishi H, Kawashima H, Kuge Y, Mukai T, et al. PET imaging of hypoxia-inducible factor-1-active tumor cells with pretargeted oxygen-dependent degradable streptavidin and a novel 18F-labeled biotin derivative. Mol Imaging Biol. 2010. doi:10.1007/s11307-010-0418-6.
  76. 76.
    Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–26.PubMedCrossRefGoogle Scholar
  77. 77.
    Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol. 2005;77(5):587–97.PubMedCrossRefGoogle Scholar
  78. 78.
    Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 2009;39(2):124–45.PubMedCrossRefGoogle Scholar
  79. 79.
    Kalliokoski T, Simell O, Haaparanta M, Viljanen T, Solin O, Knuuti J, et al. An autoradiographic study of [(18)F]FDG uptake to islets of Langerhans in NOD mouse. Diabetes Res Clin Pract. 2005;70(3):217–24.PubMedCrossRefGoogle Scholar
  80. 80.
    Kalliokoski T, Nuutila P, Virtanen KA, Iozzo P, Bucci M, Svedstrom E, et al. Pancreatic glucose uptake in vivo in men with newly diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2008;93(5):1909–14.PubMedCrossRefGoogle Scholar
  81. 81.
    Bleeker-Rovers CP, Boerman OC, Rennen HJ, Corstens FH, Oyen WJ. Radiolabeled compounds in diagnosis of infectious and inflammatory disease. Curr Pharm Des. 2004;10(24):2935–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Paik JY, Lee KH, Byun SS, Choe YS, Kim BT. Use of insulin to improve [18F]fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun. 2002;23(6):551–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Eriksson O, Sadeghi A, Carlsson B, Eich T, Lundgren T, Nilsson B, et al. Distribution of adoptively transferred porcine T-lymphoblasts tracked by (18)F-2-fluoro-2-deoxy-d-glucose and position emission tomography. Nucl Med Biol. 2011;38(6):827–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Toso C, Zaidi H, Morel P, Armanet M, Wojtusciszyn A, Mai G, et al. Assessment of 18F-FDG-leukocyte imaging to monitor rejection after pancreatic islet transplantation. Transplant Proc. 2006;38(9):3033–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Preclinical PET Platform, Department of Medicinal ChemistryUppsala UniversityUppsalaSweden
  2. 2.Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations