PET molecular imaging in stem cell therapy for neurological diseases

Review Article

Abstract

Human neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells’ survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases.

Keywords

Positron emission tomography (PET) Stem cell therapy Neurological disease 

References

  1. 1.
    Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009;87:2183–200.PubMedCrossRefGoogle Scholar
  2. 2.
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Gera A, Steinberg GK, Guzman R. In vivo neural stem cell imaging: current modalities and future directions. Regen Med 2010;5:73–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Higuchi T, Anton M, Saraste A, Dumler K, Pelisek J, Nekolla SG, et al. Reporter gene PET for monitoring survival of transplanted endothelial progenitor cells in the rat heart after pretreatment with VEGF and atorvastatin. J Nucl Med 2009;50:1881–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Doyle B, Kemp BJ, Chareonthaitawee P, Reed C, Schmeckpeper J, Sorajja P, et al. Dynamic tracking during intracoronary injection of 18F-FDG-labeled progenitor cell therapy for acute myocardial infarction. J Nucl Med 2007;48:1708–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 2006;47:1295–301.PubMedGoogle Scholar
  7. 7.
    Jiang H, Cheng Z, Tian M, Zhang H. In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging 2011;38:774–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Renoncourt Y, Carroll P, Filippi P, Arce V, Alonso S. Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons. Mech Dev 1998;79:185–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Ii M, Nishimura H, Sekiguchi H, Kamei N, Yokoyama A, Horii M, et al. Concurrent vasculogenesis and neurogenesis from adult neural stem cells. Circ Res 2009;105:860–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, et al. Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler Thromb Vasc Biol 2007;27:2127–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Liour S, Kraemer S, Dinkins M, Su C, Yanagisawa M, Yu R. Further characterization of embryonic stem cell-derived radial glial cells. Glia 2006;53:43–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004;10(Suppl):S42–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee CS, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 2005;19:183–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005;115:102–9.PubMedGoogle Scholar
  15. 15.
    Gage FH. Mammalian neural stem cells. Science 2000;287:1433–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 2008;363:2111–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 2004;1016:145–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, et al. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 2005;52:243–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, et al. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest 2006;53:61–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 2005;102:14069–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Cummings BJ, Uchida N, Tamaki SJ, Anderson AJ. Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol Res 2006;28:474–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Palm K, Salin-Nordström T, Levesque MF, Neuman T. Fetal and adult human CNS stem cells have similar molecular characteristics and developmental potential. Brain Res Mol Brain Res 2000;78:192–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Davis SF, Hood J, Thomas A, Bunnell BA. Isolation of adult rhesus neural stem and progenitor cells and differentiation into immature oligodendrocytes. Stem Cells Dev 2006;15:191–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Ryu JK, Cho T, Wang YT, McLarnon JG. Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. J Neuroinflammation 2009;6:39.PubMedCrossRefGoogle Scholar
  25. 25.
    Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T. Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 2009;29:15694–702.PubMedCrossRefGoogle Scholar
  26. 26.
    Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 2006;26:3377–89.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases. Transl Res 2010;156:155–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 2010;28:152–63.PubMedGoogle Scholar
  29. 29.
    Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 2009;30:534–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Jin K, Mao X, Xie L, Greenberg RB, Peng B, Moore A, et al. Delayed transplantation of human neural precursor cells improves outcome from focal cerebral ischemia in aged rats. Aging Cell 2010;9:1076–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 1997;94:4080–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Ide C, Nakai Y, Nakano N, Seo TB, Yamada Y, Endo K, et al. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res 2010;1332:32–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Chiba Y, Kuroda S, Maruichi K, Osanai T, Hokari M, Yano S, et al. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model. Neurosurgery 2009;64:991–9. discussion 99–1000.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee KH, Suh-Kim H, Choi JS, Jeun SS, Kim EJ, Kim SS, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol Exp (Wars) 2007;67:13–22.Google Scholar
  36. 36.
    Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, et al. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci 2010;11:52.PubMedCrossRefGoogle Scholar
  37. 37.
    Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P, Busca G, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 2010;1311:12–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Blandini F, Cova L, Armentero MT, Zennaro E, Levandis G, Bossolasco P, et al. Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant 2010;19:203–17.PubMedCrossRefGoogle Scholar
  39. 39.
    Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 2010;88:1017–25.PubMedGoogle Scholar
  40. 40.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005;11:96–104.PubMedCrossRefGoogle Scholar
  41. 41.
    Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 2008;1229:233–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu QY, Li J, Feng ZT, Wang TH. Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer’s disease rat model. Neurosci Lett 2007;417:281–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 2010;214:193–200.PubMedCrossRefGoogle Scholar
  44. 44.
    Snyder BR, Chiu AM, Prockop DJ, Chan AW. Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PLoS One 2010;5:e9347.PubMedCrossRefGoogle Scholar
  45. 45.
    Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009;57:1192–203.PubMedCrossRefGoogle Scholar
  46. 46.
    Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 2010;155:62–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 2008;3:587–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 2009;4:11–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 2009;284:17634–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 2008;105:5856–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 2009;27:806–11.PubMedCrossRefGoogle Scholar
  54. 54.
    Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 2010;19:1017–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SJ, Huang SS, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev 2010;19:1757–67.PubMedCrossRefGoogle Scholar
  56. 56.
    Yamashita T, Kawai H, Tian F, Ohta Y, Abe K. Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplant 2010. [Epub ahead of print].Google Scholar
  57. 57.
    Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009;27:743–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 2010;107:12704–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang Y, Ruel M, Beanlands RS, deKemp RA, Suuronen EJ, DaSilva JN. Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 2008;14:3835–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Ma B, Hankenson KD, Dennis JE, Caplan AI, Goldstein SA, Kilbourn MR. A simple method for stem cell labeling with fluorine 18. Nucl Med Biol 2005;32:701–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Olasz EB, Lang L, Seidel J, Green MV, Eckelman WC, Katz SI. Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 2002;260:137–48.PubMedCrossRefGoogle Scholar
  62. 62.
    Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 2002;99:3030–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Qian H, Yang Y, Huang J, Gao R, Dou K, Yang G, et al. Intracoronary delivery of autologous bone marrow mononuclear cells radiolabeled by 18F-fluoro-deoxy-glucose: tissue distribution and impact on post-infarct swine hearts. J Cell Biochem 2007;102:64–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198–202.PubMedCrossRefGoogle Scholar
  65. 65.
    Blocklet D, Toungouz M, Berkenboom G, Lambermont M, Unger P, Preumont N, et al. Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 2006;24:333–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Huang J, Lee CC, Sutcliffe JL, Cherry SR, Tarantal AF. Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for microPET imaging. Mol Imaging 2008;7:1–11.PubMedGoogle Scholar
  67. 67.
    Tarantal AF, Lee CC, Batchelder CA, Christensen JE, Prater D, Cherry SR. Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol Imaging Biol 2011. [Epub ahead of print].Google Scholar
  68. 68.
    Wienhard K, Coenen HH, Pawlik G, Rudolf J, Laufer P, Jovkar S, et al. PET studies of dopamine receptor distribution using [18F]fluoroethylspiperone: findings in disorders related to the dopaminergic system. J Neural Transm Gen Sect 1990;81:195–213.PubMedCrossRefGoogle Scholar
  69. 69.
    Przedborski S, Goldman S, Levivier M, Giladi N, Bidaut LM, Hildebrand J, et al. Brain glucose metabolism and dopamine D2 receptor analysis in a patient with hemiparkinsonism-hemiatrophy syndrome. Mov Disord 1993;8:391–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Jackson J, Chapon C, Jones W, Hirani E, Qassim A, Bhakoo K. In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson’s disease. J Neurosci Methods 2009;183:141–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Rodríguez-Gómez JA, Lu JQ, Velasco I, Rivera S, Zoghbi SS, Liow JS, et al. Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 2007;25:918–28.PubMedCrossRefGoogle Scholar
  72. 72.
    Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, et al. Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse 2009;63:541–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang R, Zhang J, Guo Z, Shen L, Shang A, Chen Y, et al. In-vivo PET imaging of implanted human retinal pigment epithelium cells in a Parkinson’s disease rat model. Nucl Med Commun 2008;29:455–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang H, Zheng X, Yang X, Fang S, Shen G, Zhao C, et al. 11C-NMSP/18F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumatic brain injury. Eur J Nucl Med Mol Imaging 2008;35:1699–708.PubMedCrossRefGoogle Scholar
  75. 75.
    Miyagawa M, Anton M, Wagner B, Haubner R, Souvatzoglou M, Gansbacher B, et al. Non-invasive imaging of cardiac transgene expression with PET: comparison of the human sodium/iodide symporter gene and HSV1-tk as the reporter gene. Eur J Nucl Med Mol Imaging 2005;32:1108–14.PubMedCrossRefGoogle Scholar
  76. 76.
    Vilekar P, Awasthi V, Lagisetty P, King C, Shankar N, Awasthi S. In vivo trafficking and immunostimulatory potential of an intranasally-administered primary dendritic cell-based vaccine. BMC Immunol 2010;11:60.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang J, Zhang S, Rabinovich B, Bidaut L, Soghomonyan S, Alauddin MM, et al. Human CD34+ cells in experimental myocardial infarction: long-term survival, sustained functional improvement, and mechanism of action. Circ Res 2010;106:1904–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Willmann JK, Paulmurugan R, Rodriguez-Porcel M, Stein W, Brinton TJ, Connolly AJ, et al. Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology 2009;252:117–27.PubMedCrossRefGoogle Scholar
  79. 79.
    Gyöngyösi M, Blanco J, Marian T, Trón L, Petneházy O, Petrasi Z, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 2008;1:94–103.PubMedCrossRefGoogle Scholar
  80. 80.
    Roelants V, Labar D, de Meester C, Havaux X, Tabilio A, Gambhir SS, et al. Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 2008;49:1836–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Chang CW, Lin M, Wu SY, Hsieh CH, Liu RS, Wang SJ, et al. A high yield robotic synthesis of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) and 9-[3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG) for gene expression imaging. Appl Radiat Isot 2007;65:57–63.PubMedCrossRefGoogle Scholar
  82. 82.
    de Vries EF, van Dillen IJ, van Waarde A, Willemsen AT, Vaalburg W, Mulder NH, et al. Evaluation of [18F]FHPG as PET tracer for HSVtk gene expression. Nucl Med Biol 2003;30:651–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998;39:2003–11.PubMedGoogle Scholar
  84. 84.
    Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, et al. 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 2001;42:96–105.PubMedGoogle Scholar
  85. 85.
    Cai H, Yin D, Zhang L, Yang X, Xu X, Liu W, et al. Preparation and biological evaluation of 2-amino-6-[18F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl) purine (6-[18F]FPCV) as a novel PET probe for imaging HSV1-tk reporter gene expression. Nucl Med Biol 2007;34:717–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 2004;9:436–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Terrovitis J, Kwok KF, Lautamäki R, Engles JM, Barth AS, Kizana E, et al. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 2008;52:1652–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Franzius C, Riemann B, Vormoor J, Kopka K, Wagner S, Rath B, et al. Metastatic neuroblastoma demonstrated by whole-body PET-CT using 11C-HED. Nuklearmedizin 2005;44:N4–5.PubMedGoogle Scholar
  89. 89.
    Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 2007;48:827–36.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 2010;37:4861–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006;113:1005–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Higuchi T, Anton M, Dumler K, Seidl S, Pelisek J, Saraste A, et al. Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med 2009;50:1088–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Waerzeggers Y, Klein M, Miletic H, Himmelreich U, Li H, Monfared P, et al. Multimodal imaging of neural progenitor cell fate in rodents. Mol Imaging 2008;7:77–91.PubMedGoogle Scholar
  94. 94.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344:710–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247:574–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Hantraye P, Brownell AL, Elmaleh D, Spealman RD, Wüllner U, Brownell GL, et al. Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. Neuroreport 1992;3:265–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Meltzer PC, Liang AY, Brownell AL, Elmaleh DR, Madras BK. Substituted 3-phenyltropane analogs of cocaine: synthesis, inhibition of binding at cocaine recognition sites, and positron emission tomography imaging. J Med Chem 1993;36:855–62.PubMedCrossRefGoogle Scholar
  98. 98.
    Morris ED, Babich JW, Alpert NM, Bonab AA, Livni E, Weise S, et al. Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT. Synapse 1996;24:262–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 2001;76:1565–72.PubMedCrossRefGoogle Scholar
  100. 100.
    Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002;99:2344–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Goodman MM, Kilts CD, Keil R, Shi B, Martarello L, Xing D, et al. 18F-labeled FECNT: a selective radioligand for PET imaging of brain dopamine transporters. Nucl Med Biol 2000;27:1–12.PubMedCrossRefGoogle Scholar
  102. 102.
    Masilamoni G, Votaw J, Howell L, Villalba RM, Goodman M, Voll RJ, et al. (18)F-FECNT: validation as PET dopamine transporter ligand in parkinsonism. Exp Neurol 2010;226:265–73.PubMedCrossRefGoogle Scholar
  103. 103.
    Farde L. Selective D1- and D2-dopamine receptor blockade both induces akathisia in humans–a PET study with [11C]SCH 23390 and [11C]raclopride. Psychopharmacology (Berl) 1992;107:23–9.CrossRefGoogle Scholar
  104. 104.
    Chopp M, Li Y, Zhang ZG. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 2009;40:S143–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology 2005;64:208–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Shyu WC, Li KW, Peng HF, Lin SZ, Liu RS, Wang HJ, et al. Induction of GAP-43 modulates neuroplasticity in PBSC (CD34+) implanted-Parkinson’s model. J Neurosci Res 2009;87:2020–33.PubMedCrossRefGoogle Scholar
  107. 107.
    Sermon K, Goossens V, Seneca S, Lissens W, De Vos A, Vandervorst M, et al. Preimplantation diagnosis for Huntington’s disease (HD): clinical application and analysis of the HD expansion in affected embryos. Prenat Diagn 1998;18:1427–36.PubMedCrossRefGoogle Scholar
  108. 108.
    Vazey EM, Chen K, Hughes SM, Connor B. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp Neurol 2006;199:384–96.PubMedCrossRefGoogle Scholar
  109. 109.
    Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, et al. Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 2006;197:465–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 1995;2:148–56.PubMedCrossRefGoogle Scholar
  111. 111.
    Longhi L, Zanier ER, Royo N, Stocchetti N, McIntosh TK. Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transpl Immunol 2005;15:143–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, et al. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 2007;24:216–25.PubMedCrossRefGoogle Scholar
  113. 113.
    Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 2006;201:281–92.PubMedCrossRefGoogle Scholar
  114. 114.
    Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 2004;55:1185–93.PubMedCrossRefGoogle Scholar
  115. 115.
    Xi W, Tian M, Zhang H. Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res 2011;70:133–43.PubMedCrossRefGoogle Scholar
  116. 116.
    Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, et al. Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 2010;223:537–47.PubMedCrossRefGoogle Scholar
  117. 117.
    Salewski RP, Eftekharpour E, Fehlings MG. Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury? J Cell Physiol 2010;222:515–21.PubMedGoogle Scholar
  118. 118.
    Robbins RD, Prasain N, Maier BF, Yoder MC, Mirmira RG. Inducible pluripotent stem cells: not quite ready for prime time? Curr Opin Organ Transplant 2010;15:61–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010;6:71–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009;27:2667–74.PubMedCrossRefGoogle Scholar
  122. 122.
    Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L, et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 2009;106:8918–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 2009;6:363–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009;4:472–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949–53.PubMedCrossRefGoogle Scholar
  126. 126.
    Kirik D, Breysse N, Björklund T, Besret L, Hantraye P. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2005;32 Suppl 2:S417–34.PubMedCrossRefGoogle Scholar
  127. 127.
    Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard ML, et al. Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci 2010;30:6454–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Nuclear MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhou, ZhejiangChina
  2. 2.Zhejiang University Medical PET CenterHangzhouChina
  3. 3.Institute of Nuclear Medicine and Molecular Imaging of Zhejiang UniversityHangzhouChina
  4. 4.Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
  5. 5.Department of Experimental Diagnostic ImagingThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations