Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging?

  • Stephan Walrand
  • Glenn D. Flux
  • Mark W. Konijnenberg
  • Roelf Valkema
  • Eric P. Krenning
  • Renaud Lhommel
  • Stanislas Pauwels
  • Francois Jamar
Review Article


This paper reviews issues concerning 86Y positron emission tomography (PET), 90Y PET and 90Y bremsstrahlung imaging. Specific methods and corrections developed for quantitative imaging, for application in preclinical and clinical studies, and to assess 90Y dosimetry are discussed. The potential imaging capabilities with the radioisotopes 87Y and 88Y are also considered. Additional studies required to assess specific unaddressed issues are also identified.


Yttrium Peptides SIRT Imaging Dosimetry 


Conflicts of interest



  1. 1.
    Brans B, Linden O, Giammarile F, Tennvall J, Punt C. Clinical applications of newer radionuclide therapies. Eur J Cancer 2006;42(8):994–1003.PubMedCrossRefGoogle Scholar
  2. 2.
    de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005;46:13S–7S.PubMedGoogle Scholar
  3. 3.
    Lhommel R, Walrand S, van Elmbt L, Pauwels S, Jamar F. Dose-response relationship in liver-SIRT: Y90 TOF-PET versus Tc99m-MAA SPECT based dosimetry. Eur J Nucl Med Mol Imaging 2010;37(2):S201.CrossRefGoogle Scholar
  4. 4.
    Flux GD, Haq M, Chittenden SJ, Buckley S, Hindorf C, Newbold K, et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010;37(2):270–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Campbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys 2009;74(1):313–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres. Phys Med Biol 2008;53(22):6591–603.PubMedCrossRefGoogle Scholar
  7. 7.
    Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, et al. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response–implications for radionuclide therapy. J Nucl Med 2008;49(11):1884–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 2006;47(9):1467–75.PubMedGoogle Scholar
  9. 9.
    Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 2005;46:92S–8S.PubMedGoogle Scholar
  10. 10.
    Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in (90)Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging 2011. doi: 10.1007/s00259-011-1744-x.
  11. 11.
    Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005;46:99S–106S.PubMedGoogle Scholar
  12. 12.
    Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004;31(7):1038–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Barendsen GW, Broerse JJ. Experimental radiotherapy of a rat rhabdomyosarcoma with 15 MeV neutrons and 300 kV x-rays. II. Effects of fractionated treatments, applied five times a week for several weeks. Eur J Cancer 1970;6:89–109.PubMedGoogle Scholar
  14. 14.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009;50(Suppl 1):122S–50S.PubMedCrossRefGoogle Scholar
  15. 15.
    Curtis SB, Barendsen GW, Hermens AF. Cell kinetic model of tumour growth and regression for a rhabdomyosarcoma in the rat: undisturbed growth and radiation response to large single doses. Eur J Cancer 1973;9:81–7.PubMedGoogle Scholar
  16. 16.
    Connell PP, Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res 2009;69(2):383–92.PubMedCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Pentlow KS, Finn RD, Larson SM, Erdi YE, Beattie BJ, Humm JL. Quantitative imaging of yttrium-86 with PET. The occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging 2000;3(3):85–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30(5):716–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging 2008;52(2):159–65.PubMedGoogle Scholar
  22. 22.
    Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19(4):482–90.PubMedGoogle Scholar
  23. 23.
    Barker WC, Szajek LP, Green SL, Carson RE. Improved quantification for Tc-94m PET imaging. IEEE Trans Nucl Sci 2001;48(3):739–42.CrossRefGoogle Scholar
  24. 24.
    Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays. Med Phys 2003;30(9):2410–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Vandenberghe S. Three-dimensional positron emission tomography imaging with 124I and 86Y. Nucl Med Commun 2006;27(3):237–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Palm S, Enmon RM, Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of (86)Y-trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44(7):1148–55.PubMedGoogle Scholar
  27. 27.
    Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J Nucl Med 2010;51(6):942–50.PubMedCrossRefGoogle Scholar
  28. 28.
    McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2007;2(9):e907.PubMedCrossRefGoogle Scholar
  29. 29.
    Clifford T, Boswell CA, Biddlecombe GB, Lewis JS, Brechbiel MW. Validation of a novel CHX-A'' derivative suitable for peptide conjugation: small animal PET/CT imaging using yttrium-86-CHX-A''-octreotide. J Med Chem 2006;49(14):4297–304.PubMedCrossRefGoogle Scholar
  30. 30.
    Nayak TK, Regino CA, Wong KJ, Milenic DE, Garmestani K, Baidoo KE, et al. PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A''-DTPA-cetuximab. Eur J Nucl Med Mol Imaging 2010;37(7):1368–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Schlesinger J, Koezle I, Bergmann R, Tamburini S, Bolzati C, Tisato F, et al. An 86Y-labeled mirror-image oligonucleotide: influence of Y-DOTA isomers on the biodistribution in rats. Bioconjug Chem 2008;19(4):928–39.PubMedCrossRefGoogle Scholar
  32. 32.
    Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. PET imaging of tumor angiogenesis in mice with VEGF-A targeted (86)Y-CHX-A''-DTPA-bevacizumab. Int J Cancer 2011;128:(4)920–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu H, Baidoo KE, Wong KJ, Brechbiel MW. A novel bifunctional maleimido CHX-A'' chelator for conjugation to thiol-containing biomolecules. Bioorg Med Chem Lett 2008;18(8):2679–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Kutzner J, Hahn K, Beyer GJ, Grimm W, Bockisch A, Rösler HP. Scintigraphic use of 87Y during 90Y therapy of bone metastases. Nuklearmedizin 1992;31(2):53–6.PubMedGoogle Scholar
  35. 35.
    Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM. 90Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin’s lymphoma. J Nucl Med 2003;44(1):77–84.PubMedGoogle Scholar
  36. 36.
    Postema EJ, Frielink C, Oyen WJ, Raemaekers JM, Goldenberg DM, Corstens FH, et al. Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm 2003;18(4):525–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Goodwin DA, Meares CF, Watanabe N, McTigue M, Chaovapong W, Ransone CM, et al. Pharmacokinetics of pretargeted monoclonal antibody 2D12.5 and 88Y-Janus-2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecanetetraacetic acid (DOTA) in BALB/c mice with KHJJ mouse adenocarcinoma: a model for 90Y radioimmunotherapy. Cancer Res 1994;54(22):5937–46.PubMedGoogle Scholar
  38. 38.
    Buchsbaum DJ, Hanna DE, Randall BC, Buchegger F, Mach JP. Radiolabeling of monoclonal antibody against carcinoembryonic antigen with 88Y and biodistribution studies. Int J Nucl Med Biol 1985;12(2):79–82.PubMedCrossRefGoogle Scholar
  39. 39.
    Kutzner J, Mittas M, Grimm W. Distribution in rats after intravenous injection of 88Y compounds. Nuklearmedizin 1981;20(1):35–9.PubMedGoogle Scholar
  40. 40.
    Koppe MJ, Bleichrodt RP, Soede AC, Verhofstad AA, Goldenberg DM, Oyen WJ, et al. Biodistribution and therapeutic efficacy of (125/131)I-, (186)Re-, (88/90)Y-, or (177)Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med 2004;45(7):1224–32.PubMedGoogle Scholar
  41. 41.
    Moi MK, DeNardo SJ, Meares CF. Stable bifunctional chelates of metals used in radiotherapy. Cancer Res 1990;50(3 Suppl):789s–93s.PubMedGoogle Scholar
  42. 42.
    Kozak RW, Raubitschek A, Mirzadeh S, Brechbiel MW, Junghans RP, Gansow OA, et al. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity. Cancer Res 1989;49(10):2639–44.PubMedGoogle Scholar
  43. 43.
    Deshpande SV, DeNardo SJ, Kukis DL, Moi MK, McCall MJ, DeNardo GL, et al. Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 1990;31(4):473–9.PubMedGoogle Scholar
  44. 44.
    Beyer GJ, Bergmann R, Kampf G, Mäding P, Rösch F. Simultaneous study of the biodistribution of radio-yttrium complexed with EDTMP and citrate ligands in tumour-bearing rats. Int J Rad Appl Instrum B 1992;19(2):201–3.PubMedGoogle Scholar
  45. 45.
    Roselli M, Schlom J, Gansow OA, Raubitschek A, Mirzadeh S, Brechbiel MW, et al. Comparative biodistributions of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med 1989;30(5):672–82.PubMedGoogle Scholar
  46. 46.
    Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999;10(1):103–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Goodwin DA, Meares CF, Osen M. Biological properties of biotin-chelate conjugates for pretargeted diagnosis and therapy with the avidin/biotin system. J Nucl Med 1998;39(10):1813–8.PubMedGoogle Scholar
  48. 48.
    Behr TM, Sgouros G, Stabin MG, Béhé M, Angerstein C, Blumenthal RD, et al. Studies on the red marrow dosimetry in radioimmunotherapy: an experimental investigation of factors influencing the radiation-induced myelotoxicity in therapy with beta-, Auger/conversion electron-, or alpha-emitters. Clin Cancer Res 1999;5(10 Suppl):3031s–43s.PubMedGoogle Scholar
  49. 49.
    Behr TM, Sharkey RM, Juweid ME, Blumenthal RD, Dunn RM, Griffiths GL, et al. Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res 1995;55(17):3825–34.PubMedGoogle Scholar
  50. 50.
    Camera L, Kinuya S, Garmestani K, Brechbiel MW, Wu C, Pai LH, et al. Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraazacyclododecane tetraacetic acid (2B-DOTA). Eur J Nucl Med 1994;21(7):640–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Verel I, Visser GW, Boellaard R, Boerman OC, van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med 2003;44(10):1663–70.PubMedGoogle Scholar
  52. 52.
    Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46(11):1898–906.PubMedGoogle Scholar
  53. 53.
    Verel I, Visser GW, Boerman OC, van Eerd JE, Finn R, Boellaard R, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. Cancer Biother Radiopharm 2003;18(4):655–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, et al. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33(11):1337–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Bailey MR, Fry FA, James AC. Long-term retention of particles in the human respiratory tract. J Aerosol Sci 1985;16(4):295–305.CrossRefGoogle Scholar
  56. 56.
    Ford K. Predicted 0+ level in 40Zr90. Phys Rev 1955;98:1516–7.CrossRefGoogle Scholar
  57. 57.
    Nickles RJ, Roberts AD, Nye JA, Converse AK, Barnhart TE, Avila-Rodriguez MA, et al. Assaying and PET imaging of yttrium-90: 1> > 34 ppm > 0. IEEE Nucl Sci Symp Conf Rec 2004;6:3412–4.CrossRefGoogle Scholar
  58. 58.
    Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Zr. Appl Radiat Isot 2007;65:318–27.PubMedCrossRefGoogle Scholar
  59. 59.
    Langhoff H, Hennies H. Zum experimentellen Nachweis von Zweiquantenzerfall beim 0+-0+-Übergang des Zr90. Z Angew Phys 1961;164:166–73.Google Scholar
  60. 60.
    Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 2009;36:1696. doi: 10.1007/s00259-009-1210-1.PubMedCrossRefGoogle Scholar
  61. 61.
    Werner MK, Brechtel K, Beyer T, Dittmann K, Pfannenberg C, Kupferschläger J. PET/CT for the assessment and quantification of (90)Y biodistribution after selective internal radiotherapy (SIRT) of liver metastases. Eur J Nucl Med Mol Imaging 2010;37:407–8. doi: 10.1007/s00259-009-1317-4.PubMedCrossRefGoogle Scholar
  62. 62.
    Rault E, Clementel E, Vandenberghe S, D’Asseler Y, Van Holen R, De Beenhouwer J, et al. Comparison of yttrium-90 SPECT and PET images. J Nucl Med 2010;51(2):125S.Google Scholar
  63. 63.
    Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 2010;37:1654–62. doi: 10.1007/s00259-010-1470-9.PubMedCrossRefGoogle Scholar
  64. 64.
    Gates VL, Esmail AA, Marshall K, Spies S, Salem R. Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med 2011;52(1):72–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Walrand S, Jamar F, van Elmbt L, Lhommel R, Bidja’a Bekonde E, Pauwels S. 4-Step renal dosimetry dependent on cortex geometry applied to 90Y peptide receptor radiotherapy: evaluation using a fillable kidney phantom imaged by 90Y PET. J Nucl Med 2010;51(12):1969–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Ito S, Kurosawa H, Kasahara H, Teraoka S, Ariga E, Deji S, et al. (90)Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med 2009;23(3):257–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 1994;35(8):1381–9.PubMedGoogle Scholar
  68. 68.
    Shen S, DeNardo GL, DeNardo SJ. Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys 1994;21(9):1409–17.PubMedCrossRefGoogle Scholar
  69. 69.
    Qian W, Clarke LP. A restoration algorithm for P-32 and Y-90 bremsstrahlung emission nuclear imaging: a wavelet-neural network approach. Med Phys 1996;23:1309–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Siegel JA. Quantitative bremsstrahlung SPECT imaging: attenuation-corrected activity determination. J Nucl Med 1994;35(7):1213–6.PubMedGoogle Scholar
  71. 71.
    Clarke LP, Cullom SJ, Shaw R, Reece C, Penney BC, King MA, et al. Bremsstrahlung imaging using the gamma camera: factors affecting attenuation. J Nucl Med 1992;33(1):161–6.PubMedGoogle Scholar
  72. 72.
    Kappadath SC. SU-GG-I-163: a scatter correction algorithm for quantitative yttrium-90 SPECT imaging. Med Phys 2010;37:3139.CrossRefGoogle Scholar
  73. 73.
    Kallergi M, Abernathy MJ, Li HD. Yttrium-90 attenuation measurements before and after maximum entropy image restoration. J Nucl Med 1994;35(5):161S.Google Scholar
  74. 74.
    Heard S, Flux GD, Guy MJ, Ott RJ. Monte Carlo simulation of 90Y bremsstrahlung imaging. IEEE Nucl Sci Symp Conf Rec 2004;6:3579–83.CrossRefGoogle Scholar
  75. 75.
    Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol 2008;53:5689–703.PubMedCrossRefGoogle Scholar
  76. 76.
    Ljungberg M, Frey E, Sjögreen K, Liu X, Dewaraja Y, Strand SE. 3D absorbed dose calculations based on SPECT: evaluation for 111-In/90-Y therapy using Monte Carlo simulations. Cancer Biother Radiopharm 2003;18(1):99–107.PubMedCrossRefGoogle Scholar
  77. 77.
    Rault E, Vandenberghe S, Staelens S, Van Holen R, Lemahieu I. Optimization of Y90 bremsstrahlung image reconstruction using multiple energy window subsets. J Nucl Med 2008;49(1):399P.Google Scholar
  78. 78.
    Rault E, Vandenberghe S, Staelens S, Lemahieu I. Optimization of yttrium-90 bremsstrahlung imaging with Monte Carlo simulations. IFMBE Proc 2009;22(7):500–4.CrossRefGoogle Scholar
  79. 79.
    Fabbri C, Sarti G, Cremonesi M, Ferrari M, Di Dia A, Agostini M, et al. Quantitative analysis of 90Y bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biother Radiopharm 2009;24(1):145–54.PubMedCrossRefGoogle Scholar
  80. 80.
    Minarik D, Ljungberg M, Segars P, Sjögreen Gleisner K. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging. Phys Med Biol 2009;54:5873–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA. Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol 2002;47(17):3211–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993;34(12):2222–6.PubMedGoogle Scholar
  83. 83.
    Rösch F, Herzog H, Plag C, Neumaier B, Braun U, Müller-Gärtner HW, et al. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur J Nucl Med 1996;23(8):958–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Sgouros G. Yttrium-90 biodistribution by yttrium-87 imaging: a theoretical feasibility analysis. Med Phys 1998;25(8):1487–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Ismail A, Giraud JY, Lu GN, Sihanath R, Pittet P, Galvan JM, et al. Radiotherapy quality assurance by individualized in vivo dosimetry: state of the art. Cancer Radiother 2009;13(3):182–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Smith T, Shawe DJ, Crawley JC, Gumpel JM. Use of single photon emission computed tomography (SPECT) to study the distribution of 90Y in patients with Baker’s cysts and persistent synovitis of the knee. Ann Rheum Dis 1988;47:553–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Smith T, Crawley JC, Shawe DJ, Gumpel JM. SPECT using bremsstrahlung to quantify 90Y uptake in Baker’s cysts: its application in radiation synovectomy of the knee. Eur J Nucl Med 1988;14:498–503.PubMedCrossRefGoogle Scholar
  88. 88.
    Rhymer S, Parker JA, Palmer M. Detection of Y-90 extravasation by bremsstrahlung imaging for patients undergoing yttrium-90-ibritumomab tiuxetan (Zevalin) therapy. J Nucl Med 2008;49(1):417P.Google Scholar
  89. 89.
    Sebastian AJ, Szyszko T, Al-Nahhas A, Nijran K, Tait NP. Evaluation of hepatic angiography procedures and bremsstrahlung imaging in selective internal radiation therapy: a two-year single-center experience. Cardiovasc Intervent Radiol 2008;31(3):643–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Mansberg R, Sorensen N, Mansberg V, Van der Wall H. Yttrium 90 bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging 2007;34(11):1887.PubMedCrossRefGoogle Scholar
  91. 91.
    Machac J, Weintraub J, Nowakowski F, Mobley D, Zhang Z, Warner R. Variations in liver perfusion patterns in patients with liver tumors undergoing therapy with yttrium-90 microspheres, studied with SPECT/CT. J Nucl Med 2007;48(2):396P.Google Scholar
  92. 92.
    Knesaurek K, Muzinic M, Zhang Z, DaCosta M, Machac J. Comparison of visual and computer calculated coregistration of Y-90 and Tc-99m MAA SPECT/CT images in treatment of liver cancer. J Nucl Med 2008;49(1):112P.Google Scholar
  93. 93.
    Knesaurek K, Machac J, Muzinic M, DaCosta M, Zhang Z, Heiba S. Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99m (99mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Technol Cancer Res Treat 2010;9(3):253–62.PubMedGoogle Scholar
  94. 94.
    Moore S, Park M, Mueller S. Activity estimation performance in Y-90 microsphere bremsstrahlung SPECT. J Nucl Med 2009;50(2):1433.Google Scholar
  95. 95.
    Tehranipour N, AL-Nahhas A, Canelo R, Stamp G, Woo K, Tait P, et al. Concordant F-18 FDG PET and Y-90 bremsstrahlung scans depict selective delivery of Y-90-microspheres to liver tumors: confirmation with histopathology. Clin Nucl Med 2007;32(5):371–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Simon N, Feitelberg S. Scanning bremsstrahlung of yttrium-90 microspheres injected intra-arterially. Radiology 1967;88(4):719–24.PubMedGoogle Scholar
  97. 97.
    Gnanasegaran G, Buscombe JR, O’Rourke E, Caplin ME, Purfield D, Hilson AJW. Bremsstrahlung imaging after intra-arterial 90Y lanreotide radionuclide therapy for carcinoid liver metastases. Nucl Med Commun 2005;26(3):284–5.Google Scholar
  98. 98.
    Luo J, Rao P, Zimmer M, Polis M, Mistretta M, Spies S. Imaging technique in estimating lung shunting of yttrium-90 microspheres. Med Phys 2005;32:1913.Google Scholar
  99. 99.
    Minarik D, Sjogreen Gleisner K, Ljungberg M. Evaluation of quantitative 90Y bremsstrahlung SPECT based on patient studies. J Nucl Med 2009;50(2):378.Google Scholar
  100. 100.
    Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med 2010;51(9):1377–85.PubMedCrossRefGoogle Scholar
  101. 101.
    Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, et al. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med 2009;50(3):435–43.PubMedCrossRefGoogle Scholar
  102. 102.
    Lövqvist A, Humm JL, Sheikh A, Finn RD, Koziorowski J, Ruan S, et al. PET imaging of (86)Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between (86)Y and (111)In radiolabels. J Nucl Med 2001;42(8):1281–7.PubMedGoogle Scholar
  103. 103.
    Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29(5):599–606.PubMedCrossRefGoogle Scholar
  104. 104.
    Wei L, Zhang X, Gallazzi F, Miao Y, Jin X, Brechbiel MW, et al. Melanoma imaging using (111)In-, (86)Y- and (68)Ga-labeled CHX-A”-Re(Arg11)CCMSH. Nucl Med Biol 2009;36(4):345–54.PubMedCrossRefGoogle Scholar
  105. 105.
    Helisch A, Förster GJ, Reber H, Buchholz HG, Arnold R, Göke B, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004;31(10):1386–92.PubMedCrossRefGoogle Scholar
  106. 106.
    Förster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Mäcke HR, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med 2001;28(12):1743–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000;27:273–82.PubMedCrossRefGoogle Scholar
  108. 108.
    de Jong M, Bakker WH, Krenning EP, Breeman WAP, van der Pluijm ME, Bernard BF, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997;24:368–71.PubMedCrossRefGoogle Scholar
  109. 109.
    Jacobs SA, Harrison AM, Swerdlow SH, Foon KA, Avril N, Vidnovic N, et al. Radioisotopic localization of (90)yttrium-ibritumomab tiuxetan in patients with CD20+ non-Hodgkin’s lymphoma. Mol Imaging Biol 2009;11(1):39–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stephan Walrand
    • 1
  • Glenn D. Flux
    • 2
  • Mark W. Konijnenberg
    • 3
  • Roelf Valkema
    • 3
  • Eric P. Krenning
    • 3
  • Renaud Lhommel
    • 1
  • Stanislas Pauwels
    • 1
  • Francois Jamar
    • 1
  1. 1.Center of Nuclear MedicineUniversité Catholique de LouvainBrusselsBelgium
  2. 2.Department of PhysicsRoyal Marsden NHS Foundation TrustSuttonUK
  3. 3.Department of Nuclear MedicineErasmus MCRotterdamThe Netherlands

Personalised recommendations