Advertisement

Iterative reconstruction or filtered backprojection for semi-quantitative assessment of dopamine D2 receptor SPECT studies?

  • Walter KochEmail author
  • Christine Suessmair
  • Klaus Tatsch
  • Gabriele Pöpperl
Original Article

Abstract

Purpose

In routine clinical practice striatal dopamine D2 receptor binding is generally assessed using data reconstructed by filtered backprojection (FBP). The aim of this study was to investigate the use of an iterative reconstruction algorithm (ordered subset expectation maximization, OSEM) and to assess whether it may provide comparable or even better results than those obtained by standard FBP.

Methods

In 56 patients with parkinsonian syndromes, single photon emission computed tomography (SPECT) scans were acquired 2 h after i.v. application of 185 MBq [123I]iodobenzamide (IBZM) using a triple-head gamma camera (Siemens MS 3). The scans were reconstructed both by FBP and OSEM (3 iterations, 8 subsets) and filtered using a Butterworth filter. After attenuation correction the studies were automatically fitted to a mean template with a corresponding 3-D volume of interest (VOI) map covering striatum (S), caudate (C), putamen (P) and several reference VOIs using BRASS software.

Results

Visual assessment of the fitted studies suggests a better separation between C and P in studies reconstructed by OSEM than FBP. Unspecific background activity appears more homogeneous after iterative reconstruction. The correlation shows a good accordance of dopamine receptor binding using FBP and OSEM (intra-class correlation coefficients S: 0.87; C: 0.88; P: 0.84). Receiver-operating characteristic (ROC) analyses show comparable diagnostic power of OSEM and FBP in the differentiation between idiopathic parkinsonian syndrome (IPS) and non-IPS.

Conclusion

Iterative reconstruction of IBZM SPECT studies for assessment of the D2 receptors is feasible in routine clinical practice. Close correlations between FBP and OSEM data suggest that iteratively reconstructed IBZM studies allow reliable quantification of dopamine receptor binding even though a gain in diagnostic power could not be demonstrated.

Keywords

Iterative reconstruction IBZM Automatic data processing Dopamine D2 receptors 

Notes

Conflicts of interest

None.

References

  1. 1.
    Vaamonde J, Ibañez R, García A, Poblete V. Study of the pre and post-synaptic dopaminergic system by DaTSCAN/IBZM SPECT in the differential diagnosis of parkinsonism in 75 patients. Neurologia 2004;19:292–300.PubMedGoogle Scholar
  2. 2.
    Tissingh G, Booij J, Winogrodzka A, van Royen EA, Wolters EC. IBZM- and CIT-SPECT of the dopaminergic system in parkinsonism. J Neural Transm Suppl 1997;50:31–7.PubMedGoogle Scholar
  3. 3.
    Cordes M, Hierholzer J, Schelosky L, Schrag A, Richter WS, Eichstädt H, et al. Iodine-123-iodo-lisuride SPECT in Parkinson’s disease. J Nucl Med 1996;37:22–5.PubMedGoogle Scholar
  4. 4.
    Hatton RL, Hutton BF, Angelides S, Choong KK, Larcos G. Improved tolerance to missing data in myocardial perfusion SPET using OSEM reconstruction. Eur J Nucl Med Mol Imaging 2004;31:857–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Starck SA, Ohlsson J, Carlsson S. An evaluation of reconstruction techniques and scatter correction in bone SPECT of the spine. Nucl Med Commun 2003;24:565–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Kauppinen T, Koskinen MO, Alenius S, Vanninen E, Kuikka JT. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction. Eur J Nucl Med 2000;27:1380–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Koch W, Hamann C, Welsch J, Pöpperl G, Radau PE, Tatsch K. Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med 2005;46:1804–11.PubMedGoogle Scholar
  8. 8.
    Pareto D, Cot A, Pavía J, Falcón C, Juvells I, Lomeña F, et al. Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging. Eur J Nucl Med Mol Imaging 2003;30:1322–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Dickson JC, Tossici-Bolt L, Sera T, Erlandsson K, Varrone A, Tatsch K, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging 2010;37:23–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Catafau AM, Bullich S, Danús M, Penengo MM, Cot A, Abanades S, et al. Test-retest variability and reliability of 123I-IBZM SPECT measurement of striatal dopamine D2 receptor availability in healthy volunteers and influence of iterative reconstruction algorithms. Synapse 2008;62:62–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bullich S, Cot A, Gallego J, Gunn RN, Suáarez M, Pavía J, et al. Impact of scatter correction on D2 receptor occupancy measurements using 123I-IBZM SPECT: comparison to 11C-raclopride PET. Neuroimage 2010;50:1511–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using (123)I-labelled dopamine D(2) transporter ligands. Eur J Nucl Med Mol Imaging 2002;29:BP30–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using (123)I-labelled dopamine D(2) receptor ligands. Eur J Nucl Med Mol Imaging 2002;29:BP23–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Hudson H, Larkin R. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 2005;46:1109–18.PubMedGoogle Scholar
  16. 16.
    Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986;21:720–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med 1997;38:1453–9.PubMedGoogle Scholar
  19. 19.
    Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 1972;36:105–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 1970;29:471–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Nuyts J, Dupont P, Stroobants S, Maes A, Mortelmans L, Suetens P. Evaluation of maximum-likelihood based attenuation correction in positron emission tomography. IEEE Trans Nucl Sci 1999;46:1136–41.CrossRefGoogle Scholar
  23. 23.
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16.PubMedGoogle Scholar
  24. 24.
    Kauppinen T, Yang J, Kilpeläinen H, Kuikka JT. Quantitation of neuroreceptors: a need for better SPECT imaging. Nuklearmedizin 2001;40:102–6.PubMedGoogle Scholar
  25. 25.
    Pretorius PH, King MA, Pan TS, de Vries DJ, Glick SJ, Byrne CL. Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol 1998;43:407–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997;42:1619–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMedGoogle Scholar
  28. 28.
    Sjörgreen K, Ljungberg M, Strand SE. Parameters influencing volume and activity quantitation in SPECT. Acta Oncol 1996;35:323–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Laere KJ, Warwick J, Versijpt J, Goethals I, Audenaert K, Van Heerden B, et al. Analysis of clinical brain SPECT data based on anatomic standardization and reference to normal data: an ROC-based comparison of visual, semiquantitative, and voxel-based methods. J Nucl Med 2002;43:458–69.PubMedGoogle Scholar
  30. 30.
    Radau PE, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 2000;41:220–7.PubMedGoogle Scholar
  31. 31.
    Radau PE, Slomka PJ, Julin P, Svensson L, Wahlund LO. Evaluation of linear registration algorithms for brain SPECT and the errors due to hypoperfusion lesions. Med Phys 2001;28:1660–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Slomka PJ, Radau P, Hurwitz GA, Dey D. Automated three-dimensional quantification of myocardial perfusion and brain SPECT. Comput Med Imaging Graph 2001;25:153–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Tatsch K. Can SPET imaging of dopamine uptake sites replace PET imaging in Parkinson’s disease? For. Eur J Nucl Med Mol Imaging 2002;29:711–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Laere K, Koole M, Kauppinen T, Monsieurs M, Bouwens L, Dierck R. Nonuniform transmission in brain SPECT using 201Tl, 153Gd, and 99mTc static line sources: anthropomorphic dosimetry studies and influence on brain quantification. J Nucl Med 2000;41:2051–62.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Walter Koch
    • 1
    • 2
    Email author
  • Christine Suessmair
    • 1
    • 3
  • Klaus Tatsch
    • 1
    • 4
  • Gabriele Pöpperl
    • 1
    • 5
  1. 1.Department of Nuclear MedicineUniversity of MunichMunichGermany
  2. 2.Institute of Clinical RadiologyUniversity of MunichMunichGermany
  3. 3.Department of NeurologyUniversity of MunichMunichGermany
  4. 4.Department of Nuclear MedicineKlinikum KarlsruheKarlsruheGermany
  5. 5.Department of Nuclear MedicineKlinikum StuttgartStuttgartGermany

Personalised recommendations