Advertisement

Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours

  • Rosalba Mansi
  • Xuejuan Wang
  • Flavio Forrer
  • Beatrice Waser
  • Renzo Cescato
  • Keith Graham
  • Sandra Borkowski
  • Jean Claude Reubi
  • Helmut R. MaeckeEmail author
Original Article

Abstract

Purpose

Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as 111In and 68Ga.

Methods

RM2 was synthesized on a solid support and evaluated in vitro in PC-3 cells. IC50 and Kd values were determined. The antagonist potency was evaluated by immunofluorescence-based internalization and Ca2+ mobilization assays. Biodistribution studies were performed in PC-3 and LNCaP tumour-bearing mice with 111In-RM2 and 68Ga-RM2, respectively. PET/CT studies were performed on PC-3 and LNCaP tumour-bearing nude mice with 68Ga-RM2.

Results

RM2 and 111In-RM2 are high-affinity and selective ligands for the GRP receptor (7.7±3.3 nmol/l for RM2; 9.3±3.3 nmol/l for natIn-RM2). The potent antagonistic properties were confirmed by an immunofluorescence-based internalization and Ca2+ mobilization assays. 68Ga- and 111In-RM2 showed high and specific uptake in both the tumour and the pancreas. Uptake in the tumour remained high (15.2±4.8%IA/g at 1 h; 11.7±2.4%IA/g at 4 h), whereas a relatively fast washout from the pancreas and the other abdominal organs was observed. Uptake in the pancreas decreased rapidly from 22.6±4.7%IA/g at 1 h to 1.5±0.5%IA/g at 4 h.

Conclusion

RM2 was shown to be a potent GRPr antagonist. Pharmacokinetics and imaging studies indicate that 111In-RM2 and 68Ga-RM2 are ideal candidates for clinical SPECT and PET studies.

Keywords

Prostate cancer Gastrin-releasing peptide receptor Bombesin Gallium-68 Indium-111 

Notes

Acknowledgments

We thank Prof. Marion de Jong and Dr. Cristina Müller for support with the SPECT/CT measurements, Novartis Pharma for analytical assistance, M.L. Tamma and S. Tschumi for their expert technical help, and Bayer Schering Pharma for financial support.

Conflict of interest

Rosalba Mansi, Xuejuan Wang, Flavio Forrer, Beatrice Waser, Renzo Cescato, Jean Claude Reubi and Helmut R. Maecke declare that they have no conflict of interest.

References

  1. 1.
    Reubi JC, Macke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 2005;46 Suppl 1:67S–75S.PubMedGoogle Scholar
  2. 2.
    Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000;7:971–94.PubMedGoogle Scholar
  3. 3.
    Eisenwiener K-P, Prata MIM, Buschmann I, Zhang H-W, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 2002;13:530–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Bodei L, Paganelli G, Mariani G. Receptor radionuclide therapy of tumors: a road from basic research to clinical applications. J Nucl Med 2006;47:375–7.PubMedGoogle Scholar
  5. 5.
    Waser B, Tamma ML, Cescato R, Maecke HR, Reubi JC. Highly efficient in vivo agonist-induced internalization of sst2 receptors in somatostatin target tissues. J Nucl Med 2009;50:936–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 2006;103:16436–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 1999;59:1152–9.PubMedGoogle Scholar
  8. 8.
    Sun B, Halmos G, Schally AV, Wang X, Martinez M. Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 2000;42:295–303.CrossRefPubMedGoogle Scholar
  9. 9.
    Gugger M, Reubi JC. Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 1999;155:2067–76.PubMedGoogle Scholar
  10. 10.
    Halmos G, Wittliff JL, Schally AV. Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. Cancer Res 1995;55:280–7.PubMedGoogle Scholar
  11. 11.
    Reubi JC, Korner M, Waser B, Mazzucchelli L, Guillou L. High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 2004;31:803–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Toi-Scott M, Jones CL, Kane MA. Clinical correlates of bombesin-like peptide receptor subtype expression in human lung cancer cells. Lung Cancer 1996;15:341–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Van de Wiele C, Dumont F, Vanden Broecke R, Oosterlinck W, Cocquyt V, Serreyn R, et al. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 2000;27:1694–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang H, Chen J, Waldherr C, Hinni K, Waser B, Reubi JC, et al. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 2004;64:6707–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Lantry LE, Cappelletti E, Maddalena ME, Fox JS, Feng W, Chen J, et al. 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 2006;47:1144–52.PubMedGoogle Scholar
  16. 16.
    Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi JC, et al. Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 2005;48:100–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, et al. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 1985;316:823–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Jensen RT, Coy DH. Progress in the development of potent bombesin receptor antagonists. Trends Pharmacol Sci 1991;12:13–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Llinares M, Devin C, Chaloin O, Azay J, Noel-Artis AM, Bernad N, et al. Syntheses and biological activities of potent bombesin receptor antagonists. J Pept Res 1999;53:275–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, et al. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 2008;49:318–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Abd-Elgaliel WR, Gallazzi F, Garrison JC, Rold TL, Sieckman GL, Figueroa SD, et al. Design, synthesis, and biological evaluation of an antagonist-bombesin analogue as targeting vector. Bioconjug Chem 2008;19:2040–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Mansi R, Wang X, Forrer F, Kneifel S, Tamma ML, Waser B, et al. Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 2009;15:5240–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Heppeler A, Froidevaux S, Mäcke H, Jermann E, Béhé M, Powell P, et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J 1999;5:1974–81.CrossRefGoogle Scholar
  24. 24.
    Azay J, Nagain C, Llinares M, Devin C, Fehrentz JA, Bernad N, et al. Comparative study of in vitro and in vivo activities of bombesin pseudopeptide analogs modified on the C-terminal dipeptide fragment. Peptides 1998;19:57–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Coy DH, Mungan Z, Rossowski WJ, Cheng BL, Lin JT, Mrozinski JE Jr, et al. Development of a potent bombesin receptor antagonist with prolonged in vivo inhibitory activity on bombesin-stimulated amylase and protein release in the rat. Peptides 1992;13:775–81.CrossRefPubMedGoogle Scholar
  26. 26.
    Atherton E, Sheppard R. Fluorenylmethoxycarbonyl-polyamide solid phase peptide synthesis. General principles and development. Oxford: Oxford Information Press; 1989.Google Scholar
  27. 27.
    Velikyan I, Beyer GJ, Langstrom B. Microwave-supported preparation of (68)Ga bioconjugates with high specific radioactivity. Bioconjug Chem 2004;15:554–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Reubi JC, Wenger S, Schmuckli-Maurer J, Schaer JC, Gugger M. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6-14). Clin Cancer Res 2002;8:1139–46.PubMedGoogle Scholar
  29. 29.
    Vigna SR, Mantyh CR, Giraud AS, Soll AH, Walsh JH, Mantyh PW. Localization of specific binding sites for bombesin in the canine gastrointestinal tract. Gastroenterology 1987;93:1287–95.PubMedGoogle Scholar
  30. 30.
    Fleischmann A, Laderach U, Friess H, Buechler MW, Reubi JC. Bombesin receptors in distinct tissue compartments of human pancreatic diseases. Lab Invest 2000;80:1807–17.CrossRefPubMedGoogle Scholar
  31. 31.
    Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging 2006;33:1214–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Rogers BE, Bigott HM, McCarthy DW, Della Manna D, Kim J, Sharp TL, et al. MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue. Bioconjug Chem 2003;14:756–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Maddalena ME, Fox J, Chen J, Feng W, Cagnolini A, Linder KE, et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med 2009;50:2017–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Aprikian AG, Han K, Chevalier S, Bazinet M, Viallet J. Bombesin specifically induces intracellular calcium mobilization via gastrin-releasing peptide receptors in human prostate cancer cells. J Mol Endocrinol 1996;16:297–306.CrossRefPubMedGoogle Scholar
  35. 35.
    Wadas TJ, Eiblmaier M, Zheleznyak A, Sherman CD, Ferdani R, Liang K, et al. Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors. J Nucl Med 2008;49:1819–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Maecke HR, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46 Suppl 1:172S–8S.PubMedGoogle Scholar
  37. 37.
    Sato N, Gleave ME, Bruchovsky N, Rennie PS, Beraldi E, Sullivan LD. A metastatic and androgen-sensitive human prostate cancer model using intraprostatic inoculation of LNCaP cells in SCID mice. Cancer Res 1997;57:1584–9.PubMedGoogle Scholar
  38. 38.
    Jantscheff P, Ziroli V, Esser N, Graeser R, Kluth J, Sukolinskaya A, et al. Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model. Clin Exp Metastasis 2009;26:981–92.CrossRefPubMedGoogle Scholar
  39. 39.
    Vauquelin G, Van Liefde I, Birzbier BB, Vanderheyden PM. New insights in insurmountable antagonism. Fundam Clin Pharmacol 2002;16:263–72.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rosalba Mansi
    • 1
    • 5
  • Xuejuan Wang
    • 1
  • Flavio Forrer
    • 2
    • 6
  • Beatrice Waser
    • 3
  • Renzo Cescato
    • 3
  • Keith Graham
    • 4
  • Sandra Borkowski
    • 4
  • Jean Claude Reubi
    • 3
  • Helmut R. Maecke
    • 1
    • 5
    Email author
  1. 1.Division of Radiological ChemistryUniversity Hospital BaselBaselSwitzerland
  2. 2.Institute of Nuclear MedicineUniversity Hospital BaselBaselSwitzerland
  3. 3.Division of Cell Biology and Experimental Cancer Research, Institute of PathologyUniversity of BerneBerneSwitzerland
  4. 4.Global Drug DiscoveryBayer Schering Pharma AGBerlinGermany
  5. 5.Department of Nuclear MedicineUniversity of FreiburgFreiburgGermany
  6. 6.Erasmus Medical Centre, Nuclear MedicineRotterdamThe Netherlands

Personalised recommendations