18F-FDG PET and biomarkers for tumour angiogenesis in early breast cancer

  • Ashley M. Groves
  • Manu Shastry
  • Manuel Rodriguez-Justo
  • Anmol Malhotra
  • Raymondo Endozo
  • Timothy Davidson
  • Tina Kelleher
  • Kenneth A. Miles
  • Peter J. Ell
  • Mohammed R. Keshtgar
Original Article

Abstract

Purpose

Tumour angiogenesis is an independent and strong prognostic factor in early breast carcinoma. We performed this study to investigate the ability of 18F-FDG to detect angiogenesis in early breast carcinoma using PET/CT.

Methods

Twenty consecutive patients with early (T1-T2) breast carcinoma were recruited prospectively for 18F-FDG PET/CT. The PET/CT data were used to calculate whole tumour maximum standardized uptake value (SUVmax) and mean standardized uptake value (SUVmean). All patients underwent subsequent surgery without prior chemotherapy or radiotherapy. The excised tumour underwent immunohistochemistry for vascular endothelial growth factor (VEGF), CD105 and glucose transporter protein 1 (GLUT1).

Results

The SUVmax showed the following correlation with tumour histology: CD105: r = 0.60, p = 0.005; GLUT1: r = 0.21, p = 0.373; VEGF: r = −0.16, p = 0.496. The SUVmean showed the following correlation with tumour histology: CD105: r = 0.65, p = 0.002; GLUT1: r = 0.34, p = 0.144; VEGF: r = −0.18, p = 0.443

Conclusion

18F-FDG uptake is highly significantly associated with angiogenesis as measured by the immunohistochemistry with CD105 for new vessel formation. Given that tumour angiogenesis is an important prognostic indicator and a predictor of treatment response, 18F-FDG PET may have a role in the management of primary breast cancer patients even in early-stage disease.

Keywords

Angiogenesis Breast cancer Positron emission tomography 

References

  1. 1.
    Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology 2005;46:481–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992;84:1875–87.CrossRefPubMedGoogle Scholar
  3. 3.
    McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003;9:713–25.CrossRefPubMedGoogle Scholar
  4. 4.
    Miles KA. Functional CT imaging in oncology. Eur Radiol 2003;13 Suppl 5:M134–8.PubMedGoogle Scholar
  5. 5.
    Miles KA, Griffiths MR, Fuentes MA. Standardized perfusion value: universal CT contrast enhancement scale that correlates with FDG PET in lung nodules. Radiology 2001;220:548–53.PubMedGoogle Scholar
  6. 6.
    Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92:1599–610.CrossRefPubMedGoogle Scholar
  7. 7.
    Osborne JR, Port E, Gonen M, Doane A, Yeung H, Gerald W, et al. 18F-FDG PET of locally invasive breast cancer and association of estrogen receptor status with standardized uptake value: microarray and immunohistochemical analysis. J Nucl Med 2010;51:543–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Groves AM, Wishart GC, Shastry M, Moyle P, Iddles S, Britton P, et al. Metabolic-flow relationships in primary breast cancer: feasibility of combined PET/dynamic contrast-enhanced CT. Eur J Nucl Med Mol Imaging 2009;36:416–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008;49:879–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002;8(4 Suppl):S62–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Guo J, Higashi K, Ueda Y, Oguchi M, Takegami T, Toga H, et al. Microvessel density: correlation with 18F-FDG uptake and prognostic impact in lung adenocarcinomas. J Nucl Med 2006;47:419–25.PubMedGoogle Scholar
  12. 12.
    Kaira K, Oriuchi N, Shimizu K, Ishikita T, Higuchi T, Imai H, et al. Correlation of angiogenesis with 18F-FMT and 18F-FDG uptake in non-small cell lung cancer. Cancer Sci 2009;100:753–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Cherk MH, Foo SS, Poon AM, Knight SR, Murone C, Papenfuss AT, et al. Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J Nucl Med 2006;47:1921–6.PubMedGoogle Scholar
  14. 14.
    Strauss LG, Koczan D, Klippel S, Pan L, Cheng C, Willis S, et al. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors. J Nucl Med 2008;49:1238–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Wyss MT, Spaeth N, Biollaz G, Pahnke J, Alessi P, Trachsel E, et al. Uptake of 18F-fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J Nucl Med 2007;48:608–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006;24:2137–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Oakman C, Bessi S, Zafarana E, Galardi F, Biganzoli L, Di Leo A. Recent advances in systemic therapy: new diagnostics and biological predictors of outcome in early breast cancer. Breast Cancer Res 2009;11:205.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang SX. Bevacizumab and breast cancer: current therapeutic progress and future perspectives. Expert Rev Anticancer Ther 2009;9:1715–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Liang X, Yang D, Hu J, Hao X, Gao J, Mao Z. Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res 2008;28:1659–66.PubMedGoogle Scholar
  21. 21.
    Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008;51:1258–65.CrossRefPubMedGoogle Scholar
  22. 22.
    Yao Y, Pan Y, Chen J, Sun X, Qiu Y, Ding Y. Endoglin (CD105) expression in angiogenesis of primary hepatocellular carcinomas: analysis using tissue microarrays and comparison with CD34 and VEGF. Ann Clin Lab Sci 2007;37:39–48.PubMedGoogle Scholar
  23. 23.
    Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res 2001;7:3410–5.PubMedGoogle Scholar
  24. 24.
    Dales JP, Garcia S, Andrac L, Carpentier S, Ramuz O, Lavaut MN, et al. Prognostic significance of angiogenesis evaluated by CD105 expression compared to CD31 in 905 breast carcinomas: correlation with long-term patient outcome. Int J Oncol 2004;24:1197–204.PubMedGoogle Scholar
  25. 25.
    Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 2004;64:2941–55.CrossRefPubMedGoogle Scholar
  26. 26.
    Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 2003;44:1806–14.PubMedGoogle Scholar
  27. 27.
    Groves AM, Win T, Haim SB, Ell PJ. Non-[18F]FDG PET in clinical oncology. Lancet Oncol 2007;8:822–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Avril N, Sassen S, Roylance R. Response to therapy in breast cancer. J Nucl Med 2009;50 Suppl 1:55S–63S.CrossRefPubMedGoogle Scholar
  29. 29.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480–508.CrossRefPubMedGoogle Scholar
  30. 30.
    Groheux D, Moretti JL, Baillet G, Espie M, Giacchetti S, Hindie E, et al. Effect of (18)F-FDG PET/CT imaging in patients with clinical stage II and III breast cancer. Int J Radiat Oncol Biol Phys 2008;71:695–704.CrossRefPubMedGoogle Scholar
  31. 31.
    Fuster D, Duch J, Paredes P, Velasco M, Muñoz M, Santamaría G, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol 2008;26:4746–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Fonsatti E, Nicolay HJ, Altomonte M, Covre A, Maio M. Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 2010;86:12–9.PubMedGoogle Scholar
  33. 33.
    Dales JP, Garcia S, Carpentier S, Andrac L, Ramuz O, Lavaut MN, et al. Prediction of metastasis risk (11 year follow up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD105 expression in breast cancer (n=905). Br J Cancer 2004;90:1216–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Dales JP, Garcia S, Carpentier S, Andrac L, Ramuz O, Lavaut MN, et al. Long-term prognostic significance of neoangiogenesis in breast carcinomas. Comparison of Tie-2/Tek, CD105, and CD31 immunocytochemical expression. Hum Pathol 2004;35:176–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar P, Wang JM, Bernabeu C. CD105 and angiogenesis. J Pathol 1996;178:363–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997;57:963–9.PubMedGoogle Scholar
  37. 37.
    Dassoulas K, Gazouli M, Theodoropoulos G, Christoni Z, Rizos S, Zisi-Serbetzoglou A, et al. Vascular endothelial growth factor and endoglin expression in colorectal cancer. J Cancer Res Clin Oncol 2010;136:703–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Zijlmans HJ, Fleuren GJ, Hazelbag S, Sier CF, Dreef EJ, Kenter GG, et al. Expression of endoglin (CD105) in cervical cancer. Br J Cancer 2009;100:1617–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Nakopoulou L, Stefanaki K, Panayotopoulou E, Giannopoulou I, Athanassiadou P, Gakiopoulou-Givalou H. Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas: correlation with proliferation. Hum Pathol 2002;33:863–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 1999;59:856–61.PubMedGoogle Scholar
  41. 41.
    Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002;20:379–87.CrossRefPubMedGoogle Scholar
  42. 42.
    Jadvar H, Alavi A, Gambhir SS. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 2009;50:1820–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Miles KA, Griffiths MR, Keith CJ. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33:22–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ashley M. Groves
    • 1
  • Manu Shastry
    • 1
  • Manuel Rodriguez-Justo
    • 2
  • Anmol Malhotra
    • 3
  • Raymondo Endozo
    • 1
  • Timothy Davidson
    • 3
  • Tina Kelleher
    • 3
  • Kenneth A. Miles
    • 4
  • Peter J. Ell
    • 1
  • Mohammed R. Keshtgar
    • 3
  1. 1.Institute of Nuclear MedicineUniversity College LondonLondonUK
  2. 2.Department of HistopathologyUniversity College LondonLondonUK
  3. 3.Breast Unit, Royal Free Hospital, UCLLondonUK
  4. 4.Brighton and Sussex University HospitalsBrightonUK

Personalised recommendations