Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques

  • Yuji Kuge
  • Nozomi Takai
  • Yuki Ogawa
  • Takashi Temma
  • Yan Zhao
  • Kantaro Nishigori
  • Seigo Ishino
  • Junko Kamihashi
  • Yasushi Kiyono
  • Masashi Shiomi
  • Hideo Saji
Original Article



Membrane type 1 matrix metalloproteinase (MT1-MMP) activates pro-MMP-2 and pro-MMP-13 to their active forms and plays important roles in the destabilization of atherosclerotic plaques. This study sought to determine the usefulness of 99mTc-labelled monoclonal antibody (mAb), recognizing MT1-MMP, for imaging atherosclerosis in a rabbit model (WHHLMI rabbits).


Anti-MT1-MMP monoclonal IgG3 and negative control IgG3 were radiolabelled with 99mTc after derivatization with 6-hydrazinonicotinic acid (HYNIC) to yield 99mTc-MT1-MMP mAb and 99mTc-IgG3, respectively. WHHLMI and control rabbits were injected with these radio-probes. The aorta was removed and radioactivity was measured at 24 h after the injection. Autoradiography and histological studies were performed.


99mTc-MT1-MMP mAb accumulation in WHHLMI rabbit aortas was 5.4-fold higher than that of control rabbits. Regional 99mTc-MT1-MMP mAb accumulation was positively correlated with MT1-MMP expression (r = 0.59, p < 0.0001), while 99mTc-IgG3 accumulation was independent of MT1-MMP expression (r = 0.03, p = NS). The highest 99mTc-MT1-MMP mAb accumulation was found in atheromatous lesions (4.8 ± 1.9, %ID×BW/mm2 × 102), followed in decreasing order by fibroatheromatous (1.8 ± 1.3), collagen-rich (1.6 ± 1.0) and neointimal lesions (1.5 ± 1.5). In contrast, 99mTc-IgG3 accumulation was almost independent of the histological grade of lesions.


Higher 99mTc-MT1-MMP mAb accumulation in grade IV atheroma was shown in comparison with neointimal lesions or other more stable lesions. Nuclear imaging with 99mTc-MT1-MMP mAb, in combination with CT and MRI, could provide new diagnostic imaging capabilities for detecting vulnerable plaques, although further investigations to improve target to blood ratios are strongly required.


Atherosclerosis Imaging Matrix metalloproteinase Antibody Rabbit 


  1. 1.
    Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 2004;90:1385–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Lendon C, Born GV, Davies MJ, Richardson PD. Plaque fissure: the link between atherosclerosis and thrombosis. Nouv Rev Fr Hematol 1992;34:27–9.PubMedGoogle Scholar
  3. 3.
    Ruberg FL, Leopold JA, Loscalzo J. Atherothrombosis: plaque instability and thrombogenesis. Prog Cardiovasc Dis 2002;44:381–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Davies JR, Rudd JH, Weissberg PL. Molecular and metabolic imaging of atherosclerosis. J Nucl Med 2004;45:1898–907.PubMedGoogle Scholar
  5. 5.
    Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 2006;47:1328–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002;90:251–62.PubMedGoogle Scholar
  7. 7.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493–503.CrossRefPubMedGoogle Scholar
  8. 8.
    Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res 2003;59:812–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation 1995;91:2125–31.PubMedGoogle Scholar
  10. 10.
    Li Z, Li L, Zielke HR, Cheng L, Xiao R, Crow MT, et al. Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am J Pathol 1996;148:121–8.PubMedGoogle Scholar
  11. 11.
    Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47:C57–68.CrossRefPubMedGoogle Scholar
  12. 12.
    Hartung D, Schäfers M, Fujimoto S, Levkau B, Narula N, Kopka K, et al. Targeting of matrix metalloproteinase activation for noninvasive detection of vulnerable atherosclerotic lesions. Eur J Nucl Med Mol Imaging 2007;34:S1–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827–39.CrossRefPubMedGoogle Scholar
  14. 14.
    Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994;370:61–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Knäuper V, Bailey L, Worley JR, Soloway P, Patterson ML, Murphy G. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13. FEBS Lett 2002;532:127–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuge Y, Takai N, Ishino S, Temma T, Shiomi M, Saji H. Distribution profiles of membrane type-1 matrix metalloproteinase (MT1-MMP), matrix metalloproteinase-2 (MMP-2) and cyclooxygenase-2 (COX-2) in rabbit atherosclerosis: comparison with plaque instability analysis. Biol Pharm Bull 2007;30:1634–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Rajavashisth TB, Xu XP, Jovinge S, Meisel S, Xu XO, Chai NN, et al. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 1999;99:3103–9.PubMedGoogle Scholar
  18. 18.
    Stawowy P, Meyborg H, Stibenz D, Borges Pereira Stawowy N, Roser M, Thanabalasingam U, et al. Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis. Circulation 2005;111:2820–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Shiomi M, Ito T, Yamada S, Kawashima S, Fan J. Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). Arterioscler Thromb Vasc Biol 2003;23:1239–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 1990;31:2022–8.PubMedGoogle Scholar
  21. 21.
    Ono M, Arano Y, Mukai T, Uehara T, Fujioka Y, Ogawa K, et al. Plasma protein binding of (99m)Tc-labeled hydrazino nicotinamide derivatized polypeptides and peptides. Nucl Med Biol 2001;28:155–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Ono M, Arano Y, Uehara T, Yasushi F, Kazuma O, Namba S, et al. Intracellular metabolic fate of radioactivity after injection of technetium-99m-labeled hydrazino nicotinamide derivatized proteins. Bioconjug Chem 1999;10:386–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Larsen SK, Solomon HF, Caldwell G, Abrams MJ. [99mTc]tricine: a useful precursor complex for the radiolabeling of hydrazinonicotinate protein conjugates. Bioconjug Chem 1995;6:635–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Ishii K, Kita T, Kume N, Nagano Y, Kawai C. Uptake of acetylated LDL by peritoneal macrophages obtained from normal and Watanabe heritable hyperlipidemic rabbits, an animal model for familial hypercholesterolemia. Biochim Biophys Acta 1988;962:387–9.PubMedGoogle Scholar
  25. 25.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull Jr W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355–74.PubMedGoogle Scholar
  26. 26.
    Stary HC, Chandler AB, Glagov S, Guyton JR, Insull Jr W, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994;89:2462–78.PubMedGoogle Scholar
  27. 27.
    Kobayashi S, Inoue N, Ohashi Y, Terashima M, Matsui K, Mori T, et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol 2003;23:1398–404.CrossRefPubMedGoogle Scholar
  28. 28.
    Ishino S, Kuge Y, Takai N, Tamaki N, Strauss HW, Blankenberg FG, et al. 99mTc-Annexin A5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits. Eur J Nucl Med Mol Imaging 2007;34:889–99.CrossRefPubMedGoogle Scholar
  29. 29.
    Shiomi M, Ito T, Hirouchi Y, Enomoto M. Stability of atheromatous plaque affected by lesional composition: study of WHHL rabbits treated with statins. Ann N Y Acad Sci 2001;947:419–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 2001;26:314–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao Y, Kuge Y, Zhao S, Morita K, Inubushi M, Strauss HW, et al. Comparison of 99mTc-annexin A5 with 18F-FDG for the detection of atherosclerosis in ApoE-/- mice. Eur J Nucl Med Mol Imaging 2007;34:1747–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.PubMedGoogle Scholar
  33. 33.
    Ishino S, Mukai T, Kuge Y, Kume N, Ogawa M, Takai N, et al. Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (LOX-1) with 99mTc-labeled anti-LOX-1 antibody: a potential agent for imaging of vulnerable plaque. J Nucl Med 2008;49:1677–85.CrossRefPubMedGoogle Scholar
  34. 34.
    Huhalov A, Chester KA. Engineered single chain antibody fragments for radioimmunotherapy. Q J Nucl Med Mol Imaging 2004;48:279–88.PubMedGoogle Scholar
  35. 35.
    Sharkey RM, Karacay H, Cardillo TM, Chang CH, McBride WJ, Rossi EA, et al. Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 2005;11:7109s–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis–compartmental model. Ann Nucl Med 2006;20:583–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Darambara DG, Todd-Pokropek A. Solid state detectors in nuclear medicine. Q J Nucl Med 2002;46:3–7.PubMedGoogle Scholar
  38. 38.
    Campean V, Neureiter D, Varga I, Runk F, Reiman A, Garlichs C, et al. Atherosclerosis and vascular calcification in chronic renal failure. Kidney Blood Press Res 2005;28:280–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Santoliquido A, Di Campli C, Miele L, Gabrieli ML, Forgione A, Zocco MA, et al. Hepatic steatosis and vascular disease. Eur Rev Med Pharmacol Sci 2005;9:269–71.PubMedGoogle Scholar
  40. 40.
    Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 2007;34:151–61.CrossRefPubMedGoogle Scholar
  41. 41.
    Akizawa H, Arano Y. Altering pharmacokinetics of radiolabeled antibodies by the interposition of metabolizable linkages. Metabolizable linkers and pharmacokinetics of monoclonal antibodies. Q J Nucl Med 2002;46:206–23.PubMedGoogle Scholar
  42. 42.
    Temma T, Sano K, Kuge Y, Kamihashi J, Takai N, Ogawa Y, et al. Development of a radiolabeled probe for detecting membrane type-1 matrix metalloproteinase on malignant tumors. Biol Pharm Bull 2009;32:1272–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Rogers BE, Anderson CJ, Connett JM, Guo LW, Edwards WB, Sherman EL, et al. Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjug Chem 1996;7:511–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Sugimoto K, Nishimoto N, Kishimoto T, Yoshizaki K, Nishimura T. Imaging of lesions in a murine rheumatoid arthritis model with a humanized anti-interleukin-6 receptor antibody. Ann Nucl Med 2005;19:261–6.CrossRefPubMedGoogle Scholar
  45. 45.
    D’Alessandria C, Malviya G, Viscido A, Aratari A, Maccioni F, Amato A, et al. Use of a 99mTc labeled anti-TNFalpha monoclonal antibody in Crohn’s disease: in vitro and in vivo studies. Q J Nucl Med Mol Imaging 2007;51:334–42.PubMedGoogle Scholar
  46. 46.
    Cipollone F, Fazia M, Mezzetti A. Novel determinants of plaque instability. J Thromb Haemost 2005;3:1962–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Rudd JH, Hyafil F, Fayad ZA. Inflammation imaging in atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:1009–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Breyholz HJ, Wagner S, Levkau B, Schober O, Schäfers M, Kopka K. A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo. Q J Nucl Med Mol Imaging 2007;51:24–32.PubMedGoogle Scholar
  49. 49.
    Schäfers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schäfers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004;109:2554–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Kolodgie F, Edwards S, Petrov A, Sachleben R, Hartung D, Weber DK. Noninvasive detection of matrix metalloproteinase upregulation in experimental atherosclerotic lesions and its abrogation by dietary modification [abstract]. Circulation 2001;104:694.CrossRefGoogle Scholar
  51. 51.
    Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, et al. Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 2008;118:1953–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Fujimoto S, Hartung D, Ohshima S, Edwards DS, Zhou J, Yalamanchili P, et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol 2008;52:1847–57.CrossRefPubMedGoogle Scholar
  53. 53.
    Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 2008;28:425–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yuji Kuge
    • 1
    • 2
    • 3
  • Nozomi Takai
    • 1
  • Yuki Ogawa
    • 1
  • Takashi Temma
    • 1
  • Yan Zhao
    • 2
  • Kantaro Nishigori
    • 1
  • Seigo Ishino
    • 1
  • Junko Kamihashi
    • 1
  • Yasushi Kiyono
    • 1
    • 4
  • Masashi Shiomi
    • 5
  • Hideo Saji
    • 1
  1. 1.Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of Tracer Kinetics & Bioanalysis, Graduate School of MedicineHokkaido UniversitySapporoJapan
  3. 3.Central Institute of Isotope ScienceHokkaido UniversitySapporoJapan
  4. 4.Biomedical Imaging Research CenterUniversity of FukuiFukuiJapan
  5. 5.Institute for Experimental AnimalsKobe University Graduate School of MedicineKobeJapan

Personalised recommendations