Advertisement

Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology

  • Albert FlotatsEmail author
  • Ignasi Carrió
  • Denis Agostini
  • Dominique Le Guludec
  • Claudio Marcassa
  • Michael Schaffers
  • G. Aernout Somsen
  • Mustafa Unlu
  • Hein J. Verberne
Guidelines

Abstract

This proposal for standardization of 123I-metaiodobenzylguanidine (iobenguane, MIBG) cardiac sympathetic imaging includes recommendations for patient information and preparation, radiopharmaceutical, injected activities and dosimetry, image acquisition, quality control, reconstruction methods, attenuation, scatter and collimator response compensation, data analysis and interpretation, reports, and image display. The recommendations are based on evidence coming from original or scientific studies whenever possible and as far as possible reflect the current state-of-the-art in cardiac MIBG imaging. The recommendations are designed to assist in the practice of performing, interpreting and reporting cardiac sympathetic imaging. The proposed standardization does not include clinical indications, benefits or drawbacks of cardiac sympathetic imaging, and does not address cost benefits or cost effectiveness; however, clinical settings of potential utility are mentioned. Standardization of MIBG cardiac sympathetic imaging should contribute to increasing its clinical applicability and integration into current nuclear cardiology practice.

Keywords

MIBG imaging Cardiac sympathetic imaging Guidelines 

References

  1. 1.
    Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. 131I/123I-Metaiodobenzylguanidine (MIBG) scintigraphy procedure guidelines for tumour imaging. https://www.eanm.org/scientific_info/guidelines/gl_onco_mibg.pdf. Accessed 24 May 2010.
  2. 2.
    Yamashina S, Yamazaki J. Neuronal imaging using SPECT. Eur J Nucl Med Mol Imaging 2007;34:S62–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Agostini D, Carrió I, Verberne HJ. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging 2009;36:555–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. Am Coll Cardiol Img 2010;3:92–100.Google Scholar
  5. 5.
    Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interaction, cytotoxicity and dosimetry. Eur J Nucl Med 1994;21:545–59.CrossRefPubMedGoogle Scholar
  7. 7.
    Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–7.CrossRefPubMedGoogle Scholar
  8. 8.
    European Commission. Council Directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official Journal of the European Union L 1997;180:22–7.Google Scholar
  9. 9.
    GE Healthcare. AdreView: Iobenguane I 123 injection. Revised September 2008. URL: http://md.gehealthcare.com/shared/pdfs/pi/adreview.pdf. Accessed 24 May 2010.
  10. 10.
    Ishibashi N, Abe K, Furuhashi S, Fukushima S, Yoshinobu T, Takahashi M, et al. Adverse allergic reaction to 131I MIBG. Ann Nucl Med 2009;23:697–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Jacobs F, Thierens H, Piepsz A, Bacher K, Van de Wiele C, Ham H, et al. Optimized tracer-dependent dosage cards to obtain weight independent effective doses. Eur J Nucl Med Mol Imaging 2005;32:581–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Olivier P, Colarinha P, Fettich J, Fischer S, Frökier J, Giammarile F, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging 2003;30:B45–50.CrossRefPubMedGoogle Scholar
  13. 13.
    ICRP. Radiation dose to patients from radiopharmaceuticals. ICRP Publication 80. Ann ICRP 1998;28(3).Google Scholar
  14. 14.
    Verberne HJ, Feenstra C, de Jong WM, Somsen GA, Van Eck-Smit BL. Busemann Sokole E. Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging 2005;32:1100–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Dobbeleir AA, Hambye AS, Franken PR. Influence of high energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Inoue Y, Suzuki A, Shirouzu I, Machida T, Yoshizawa Y, Akita F, et al. Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 2003;10:623–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Verberne HJ, Habraken JB, van Eck-Smit BL, Agostini D, Jacobson AF. Variations in 123I-metaiodobenzylguanidine (MIBG) late heart mediastinal ratios in chronic heart failure: a need for standardisation and validation. Eur J Nucl Med Mol Imaging 2008;35:547–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97.CrossRefPubMedGoogle Scholar
  19. 19.
    Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927–34.CrossRefPubMedGoogle Scholar
  21. 21.
    IAEA. Quality control of nuclear medicine instruments 1991. TECDOC-602. International Atomic Energy Agency, ViennaGoogle Scholar
  22. 22.
    Society of Nuclear Medicine. Procedure guideline for general imaging, version 2.0. Reston, VA: Society of Nuclear Medicine, 2004.Google Scholar
  23. 23.
    NEMA. Standards publication NU 1-2001: Performance measurements of scintillation cameras. Rosslyn, VA: National Electrical Manufacturers Association, 2001.Google Scholar
  24. 24.
    Germano G, Chua T, Kavanagh PB, Kiat H, Berman DS. Detection and correction of patient motion in dynamic and static myocardial SPECT using a multi-detector camera. J Nucl Med 1993;34:1349–55.PubMedGoogle Scholar
  25. 25.
    Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 2001;42:687–94.PubMedGoogle Scholar
  26. 26.
    Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMedGoogle Scholar
  27. 27.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Nucl Sci 1994;13:601–9.Google Scholar
  28. 28.
    Llacer J, Velkerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imaging 1989;8:186–93.CrossRefPubMedGoogle Scholar
  29. 29.
    Germano G, Kavanagh PB, Chen J, Waechter P, Su HT, Kiat H, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995;36:2127–32.PubMedGoogle Scholar
  30. 30.
    Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm. J Nucl Med 1995;36:1115–22.PubMedGoogle Scholar
  31. 31.
    Kobayashi H, Momose M, Kanaya S, Kondo C, Kusakabe K, Mitsuhashi N. Scatter correction by two-window method standardizes cardiac I-123 MIBG uptake in various gamma camera systems. Ann Nucl Med 2003;17:309–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Nakajima K, Matsubara K, Ishikawa T, Motomura N, Maeda R, Akhter N, et al. Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol 2007;14:843–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Wackers FJT. Attenuation compensation of cardiac SPECT: a critical look at a confusing world (editorial). J Nucl Cardiol 2002;9:438–40.CrossRefGoogle Scholar
  35. 35.
    Merlet P, Valette H, Dubois-Rande JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.PubMedGoogle Scholar
  36. 36.
    Estorch M, Carrió I, Berna L, Lopez-Pousa J, Torres G. Myocardial iodine-labeled metaiodobenzylguanidine uptake relates to age. J Nucl Cardiol 1995;2:126–32.PubMedGoogle Scholar
  37. 37.
    Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implications for clinical studies. J Nucl Cardiol 2004;11:126–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac events. J Nucl Med 2001;42:1757–67.PubMedGoogle Scholar
  39. 39.
    Chen W, Botvinick EH, Alavi A, Zhang Y, Yang S, Perini R, et al. Age-related decrease in cardiopulmonary adrenergic neuronal function in children as assessed by I-123 metaiodobenzylguanidine imaging. J Nucl Cardiol 2008;15:73–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation: in vivo demonstration by iodine 123-labeled metaiodobenzylguanidine scintigraphy. Am Heart J 1993;126:390–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Bax JJ, Kraft OR, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123I-mIBG Scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 2008;1:131–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212–21.CrossRefPubMedGoogle Scholar
  44. 44.
    American Heart Association, American College of Cardiology, and Society of Nuclear Medicine. Standardization of cardiac tomographic imaging. From the Committee on Advanced Cardiac Imaging and Technology, Council on Clinical Cardiology, American Heart Association; Cardiovascular Imaging Committee, American College of Cardiology; and Board of Directors, Cardiovascular Council, Society of Nuclear Medicine. Circulation 1992;86:338–9.Google Scholar
  45. 45.
    Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 1999;40:917–23.PubMedGoogle Scholar
  46. 46.
    Cohen-Solal A, Esanu Y, Logeart D, Pessione F, Dubois C, Dreyfus G, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol 1999;33:759–66.CrossRefPubMedGoogle Scholar
  47. 47.
    Yamada T, Shimonagata T, Fukunami M, Kumagai K, Ogita H, Hirata A, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol 2003;41:231–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 2008;9:1147–59.CrossRefGoogle Scholar
  49. 49.
    Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 2008;35:535–46.CrossRefPubMedGoogle Scholar
  50. 50.
    Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 2003;10:121–31.CrossRefPubMedGoogle Scholar
  51. 51.
    Paul M, Schafers M, Kies P, Acil T, Schafers K, Breithardt G, et al. Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation. Eur J Nucl Med Mol Imaging 2006;33:866–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, et al. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 2008;49:225–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 2009;53:426–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Tamaki N, Kusakabe K, Kubo A, Kumazaki T, Shimamoto K, Senda S, et al. Guidelines for clinical use of cardiac nuclear medicine (JSC2005). Circ J 2005;69 Suppl 4:1125–202.Google Scholar

Copyright information

© EANM 2010

Authors and Affiliations

  • Albert Flotats
    • 1
    Email author
  • Ignasi Carrió
    • 1
  • Denis Agostini
    • 2
  • Dominique Le Guludec
    • 3
  • Claudio Marcassa
    • 4
  • Michael Schaffers
    • 5
  • G. Aernout Somsen
    • 6
  • Mustafa Unlu
    • 7
  • Hein J. Verberne
    • 8
  1. 1.Nuclear Medicine Department, Hospital de la Santa Creu i Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Nuclear Medicine DepartmentCHU Côte de NacreCaenFrance
  3. 3.Nuclear Medicine DepartmentBichat HospitalParisFrance
  4. 4.Cardiology Department, S. Maugeri FoundationIRCCS, Scientific Institute of VerunoVerunoItaly
  5. 5.Nuclear Medicine DepartmentUniversity Hospital MuensterMünsterGermany
  6. 6.Cardiology DepartmentCardiology Centers of the NetherlandsAmsterdamThe Netherlands
  7. 7.Nuclear Medicine DepartmentGazi UniversityAnkaraTurkey
  8. 8.Nuclear Medicine Department, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations