Advertisement

Anatomical and microstructural imaging of angiogenesis

  • Fabian Kiessling
  • Daniel Razansky
  • Frauke Alves
Article

Abstract

Purpose

This article reviews and discusses different options for visualizing the microarchitecture of vessels ex vivo and in vivo with respect to reliability, practicability and availability.

Results and Discussion

The investigation of angiogenesis by standard histological methods, like microvessel density counts, is limited since the three-dimensional (3-D) architecture and the functionality of vessels cannot be considered properly. Coregistration of immunostained images of vessels may be performed but is time consuming and often not sufficiently accurate. Confocal fluorescence microscopy is an alternative, but only enables 3-D stacks of less than 500 nm in thickness. Multiphoton microscopy and other advanced technologies, such as optical coherence tomography and optical frequency domain imaging, provide a deeper view into tissues and allow for in vivo imaging of microvessels, which is a precondition for longitudinal studies. Besides these microscopic techniques, the vascularization in larger tissue samples can be investigated using corrosion casts in combination with scanning electron microscopy, or microcomputed tomography (µCT). Furthermore, recent improvements in µCT technology open up new perspectives for in vivo scans with high resolution and tolerable X-ray doses. Also 3-D contrast-enhanced high-frequency ultrasound has been shown to be sensitive for angiogenic vessels and even distinguishing between mature and immature vessels appears feasible. Microvessel architecture can also be visualized by MRI. Here, T1-weighted angiography techniques after injection of blood pool contrast agents appear preferable. Optoacoustic tomographic imaging has more recently shown promise for high-resolution in vivo mapping of the microvasculature in rodents using intrinsic haemoglobin-based contrast and exogenous contrast agents.

Keywords

Angiogenesis Angiography Computed tomography Magnetic resonance imaging Ultrasound Multiphoton microscopy 

Notes

Conflicts of interest

None.

References

  1. 1.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005;438:932–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Folkman J. Angiogenesis-dependent diseases. Semin Oncol 2001;28:536–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Doukas CN, Maglogiannis I, Chatziioannou A, Papapetropoulos A. Automated angiogenesis quantification through advanced image processing techniques. Conf Proc IEEE Eng Med Biol Soc 2006;1:2345–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Dockery P, Fraher J. The quantification of vascular beds: a stereological approach. Exp Mol Pathol 2007;82:110–20.CrossRefPubMedGoogle Scholar
  6. 6.
    McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003;9:713–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Baluk P, McDonald DM. Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 2008;1131:1–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, et al. Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res 2005;65:5352–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995;147:9–19.PubMedGoogle Scholar
  10. 10.
    Zhang S, Zhang D, Sun B. Vasculogenic mimicry: current status and future prospects. Cancer Lett 2007;254:157–64.CrossRefPubMedGoogle Scholar
  11. 11.
    West CC, Brown NJ, Mangham DC, Grimer RJ, Reed MW. Microvessel density does not predict outcome in high grade soft tissue sarcoma. Eur J Surg Oncol 2005;31:1198–205.CrossRefPubMedGoogle Scholar
  12. 12.
    Wiederhold KH, Bielser Jr W, Schulz U, Veteau MJ, Hunziker O. Three-dimensional reconstruction of brain capillaries from frozen serial sections. Microvasc Res 1976;11:175–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Kiessling F, Le-Huu M, Kunert T, Thorn M, Vosseler S, Schmidt K, et al. Improved correlation of histological data with DCE MRI parameter maps by 3D reconstruction, reslicing and parameterization of the histological images. Eur Radiol 2005;15:1079–86.CrossRefPubMedGoogle Scholar
  14. 14.
    Foreman DM, Bagley S, Moore J, Ireland GW, McLeod D, Boulton ME. Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy. Br J Ophthalmol 1996;80:246–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Kay PA, Robb RA, Bostwick DG. Prostate cancer microvessels: a novel method for three-dimensional reconstruction and analysis. Prostate 1998;37:270–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Gijtenbeek JM, Wesseling P, Maass C, Burgers L, van der Laak JA. Three-dimensional reconstruction of tumor microvasculature: simultaneous visualization of multiple components in paraffin-embedded tissue. Angiogenesis 2005;8:297–305.CrossRefPubMedGoogle Scholar
  17. 17.
    Müller SA, Nyengaard JR, Vollmer S, Arndt G, Ulbrich HF, Scholz A, Licha K, Sterner-Kock A, Hauff P. Correlation between laser induced tumor fluorescence and intratumoral structures quantified by stereological methods. The 12th International Congress for Stereology (ICS XII) 2007; Proceeding: http://icsxii.univ-st-etienne.fr/detailed_program.html
  18. 18.
    Hama Y, Suzuki K, Shingu K, Fujimori M, Kobayashi S, Usuda N, et al. Three-dimensional structure of the micro-blood vessels in thyroid tumors analyzed by immunohistochemistry coupled with image analysis. Thyroid 1999;9:927–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Verli FD, Rossi-Schneider TR, Schneider FL, Yurgel LS, de Souza MA. Vascular corrosion casting technique steps. Scanning 2007;29:128–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts—technique and applications: updated review. Scanning Microsc 1990;4:889–940.PubMedGoogle Scholar
  21. 21.
    Minnich B, Bartel H, Lametschwandtner A. Quantitative microvascular corrosion casting by 2D- and 3D-morphometry. Ital J Anat Embryol 2001;106:213–20.PubMedGoogle Scholar
  22. 22.
    McMullan DM, Hanley FL, Riemer RK. A method for selectively limiting lumen diameter in corrosion casting. Microvasc Res 2004;67:215–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Krucker T, Lang A, Meyer EP. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc Res Tech 2006;69:138–47.CrossRefPubMedGoogle Scholar
  24. 24.
    Padera TP, Stoll BR, So PT, Jain RK. Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging 2002;1:9–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Hamid SA, Ferguson LE, McGavigan CJ, Howe DC, Campbell S. Observing three-dimensional human microvascular and myogenic architecture using conventional fluorescence microscopy. Micron 2006;37:134–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 2009;26:357–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Dickie R, Bachoo RM, Rupnick MA, Dallabrida SM, Deloid GM, Lai J, et al. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvasc Res 2006;72:20–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Dutly AE, Kugathasan L, Trogadis JE, Keshavjee SH, Stewart DJ, Courtman DW. Fluorescent microangiography (FMA): an improved tool to visualize the pulmonary microvasculature. Lab Invest 2006;86:409–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Wieser E, Strohmeyer D, Rogatsch H, Horninger W, Bartsch G, Debbage P. Access of tumor-derived macromolecules and cells to the blood: an electron microscopical study of structural barriers in microvessel clusters in highly malignant primary prostate carcinomas. Prostate 2005;62:123–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156:1363–80.PubMedGoogle Scholar
  31. 31.
    Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 2009;12:113–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Apkarian RP. The fine structure of fenestrated adrenocortical capillaries revealed by in-lens field-emission scanning electron microscopy and scanning transmission electron microscopy. Scanning 1997;19:361–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Bartling SH, Stiller W, Semmler W, Kiessling F. Small animal computed tomography imaging. Curr Med Imaging Rev 2007;3:45–9.CrossRefGoogle Scholar
  34. 34.
    Marxen M, Thornton MM, Chiarot CB, Klement G, Koprivnikar J, Sled JG, et al. MicroCT scanner performance and considerations for vascular specimen imaging. Med Phys 2004;31:305–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Maehara N. Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors. Eur Radiol 2003;13:1559–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 2009;11:48–56.PubMedGoogle Scholar
  37. 37.
    Bolland BJ, Kanczler JM, Dunlop DG, Oreffo RO. Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bone 2008;43:195–202.CrossRefPubMedGoogle Scholar
  38. 38.
    Granton PV, Pollmann SI, Ford NL, Drangova M, Holdsworth DW. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition. Med Phys 2008;35:5030–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Momose A, Takeda T, Itai Y. Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat-feasibility study. Radiology 2000;217:593–6.PubMedGoogle Scholar
  40. 40.
    Takeda T, Momose A, Wu J, Yu Q, Zeniya T, Lwin TT, et al. Vessel imaging by interferometric phase-contrast X-ray technique. Circulation 2002;105:1708–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Iga AM, Sarkar S, Sales KM, Winslet MC, Seifalian AM. Quantitating therapeutic disruption of tumor blood flow with intravital video microscopy. Cancer Res 2006;66:11517–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Mueller AJ, Bartsch DU, Folberg P, Mehaffey MG, Boldt HC, Meyer M, et al. Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy. Arch Ophthalmol 1998;116:31–9.PubMedGoogle Scholar
  43. 43.
    Goetz M, Vieth M, Kanzler S, Galle PR, Delaney P, Neurath MF, et al. In vivo confocal laser laparoscopy allows real time subsurface microscopy in animal models of liver disease. J Hepatol 2008;48:91–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson JF, Vicaut E. Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J Vasc Res 2004;41:400–11.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu H, Li YQ, Yu T, Zhao YA, Zhang JP, Zhang JN, et al. Confocal endomicroscopy for in vivo detection of microvascular architecture in normal and malignant lesions of upper gastrointestinal tract. J Gastroenterol Hepatol 2008;23:56–61.PubMedGoogle Scholar
  46. 46.
    Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 2001;7:864–8. Erratum in: Nat Med 2001;7:1069.CrossRefPubMedGoogle Scholar
  47. 47.
    Lee PF, Yeh AT, Bayless KJ. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp Cell Res 2009;315:396–410.CrossRefPubMedGoogle Scholar
  48. 48.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991;254:1178–81.CrossRefPubMedGoogle Scholar
  49. 49.
    Thomas MW, Grichnik JM, Izatt JA. Three-dimensional images and vessel rendering using optical coherence tomography. Arch Dermatol 2007;143:1468–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Jia Y, Alkayed N, Wang RK. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo. J Biomed Opt 2009;14:040505.CrossRefPubMedGoogle Scholar
  51. 51.
    Lindeboom JA, Mathura KR, Ince C. Orthogonal polarization spectral (OPS) imaging and topographical characteristics of oral squamous cell carcinoma. Oral Oncol 2006;42:581–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 2009;15:1219–23.CrossRefPubMedGoogle Scholar
  53. 53.
    Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 2008;1:752–61.CrossRefPubMedGoogle Scholar
  54. 54.
    Koehl GE, Gaumann A, Geissler EK. Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin Exp Metastasis 2009;26:329–44.CrossRefPubMedGoogle Scholar
  55. 55.
    Bakan DA, Doerr-Stevens JK, Weichert JP, Longino MA, Lee FT, Counsell RE. Imaging efficacy of a hepatocyte-selective polyiodinated triglyceride for contrast-enhanced computed tomography. Am J Ther 2001;8:359–65.CrossRefPubMedGoogle Scholar
  56. 56.
    Weichert JP, Lee FT, Chosy SG, Longino MA, Kuhlman JE, Heisey DM, et al. Combined hepatocyte-selective and blood-pool contrast agents for the CT detection of experimental liver tumors in rabbits. Radiology 2000;216:865–71.PubMedGoogle Scholar
  57. 57.
    Vera DR, Mattrey RF. A molecular CT blood pool contrast agent. Acad Radiol 2002;9:784–92.CrossRefPubMedGoogle Scholar
  58. 58.
    Kao CY, Hoffman EA, Beck KC, Bellamkonda RV, Annapragada AV. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad Radiol 2003;10:475–83.CrossRefPubMedGoogle Scholar
  59. 59.
    Torchilin VP, Frank-Kamenetsky MD, Wolf GL. CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol 1999;6:61–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, et al. Volumetric computed tomography (VCT): a novel technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 2004;10:1133–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Greschus S, Kiessling F, Lichy MP, Moll J, Mueller MM, Savai R, et al. Potential applications of flat-panel volumetric CT in morphological and functional small animal imaging. Neoplasia 2005;7:730–40.CrossRefPubMedGoogle Scholar
  62. 62.
    Bäuerle T, Hilbig H, Bartling S, Kiessling F, Kersten A, Schmitt-Gräff A, et al. Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia 2008;10:511–20.PubMedGoogle Scholar
  63. 63.
    Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 2009;16:627–42.CrossRefPubMedGoogle Scholar
  64. 64.
    Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA, et al. Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res 2008;68:7042–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Siphanto RI, Thumma KK, Kolkman RG, van Leeuwen TG, de Mul FF, van Neck JW, et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt Express 2005;13:89–95.CrossRefPubMedGoogle Scholar
  66. 66.
    Ku G, Wang X, Xie X, Stoica G, Wang LV. Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl Opt 2005;44:770–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Lao Y, Xing D, Yang S, Xiang L. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys Med Biol 2008;53:4203–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang EZ, Laufer JG, Pedley RB, Beard PC. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol 2009;54:1035–46.CrossRefPubMedGoogle Scholar
  69. 69.
    Hu H, Maslov K, Wang LV. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Opt Express 2009;17:7688–93.CrossRefPubMedGoogle Scholar
  70. 70.
    Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 2003;21:803–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Niederhauser JJ, Jaeger M, Lemor R, Weber P, Frenz M. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans Med Imaging 2005;24:436–40.CrossRefPubMedGoogle Scholar
  72. 72.
    Mallidi S, Larson T, Aaron J, Sokolov K, Emelianov S. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt Express 2007;15:6583–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 2007;102:064701.CrossRefGoogle Scholar
  74. 74.
    De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008;3:557–62.CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 2006;24:848–51.CrossRefPubMedGoogle Scholar
  76. 76.
    Razansky D, Vinegoni C, Ntziachristos V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt Lett 2007;32:2891–3.CrossRefPubMedGoogle Scholar
  77. 77.
    Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster RW, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photonics 2009;3:412–7.CrossRefGoogle Scholar
  78. 78.
    Oraevsky AA, Andreev VA, Karabutov AA, Fleming RD, Gatalica Z, Singh H, et al. Laser optoacoustic imaging of the breast: detection of cancer angiogenesis. Proc SPIE 1999;3597:352.CrossRefGoogle Scholar
  79. 79.
    Manohar S, Vaartjes SE, van Hespen JC, Klaase JM, van den Engh FM, Steenbergen W, et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 2007;15:12277–85.CrossRefPubMedGoogle Scholar
  80. 80.
    Fink C, Kiessling F, Bock M, Lichy MP, Misselwitz B, Peschke P, et al. High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J Magn Reson Imaging 2003;18:59–65.CrossRefPubMedGoogle Scholar
  81. 81.
    Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Konishi J, et al. Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J Magn Reson Imaging 2001;14:705–13.CrossRefPubMedGoogle Scholar
  82. 82.
    Kobayashi H, Sato N, Kawamoto S, Saga T, Hiraga A, Ishimori T, et al. 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magn Reson Med 2001;46:579–85.CrossRefPubMedGoogle Scholar
  83. 83.
    Schwickert HC, Stiskal M, van Dijke CF, Roberts TP, Mann JS, Demsar F, et al. Tumor angiography using high-resolution, three-dimensional magnetic resonance imaging: comparison of gadopentetate dimeglumine and a macromolecular blood-pool contrast agent. Acad Radiol 1995;2:851–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Holmes WM, Maclellan S, Condon B, Dufès C, Evans TR, Uchegbu IF, et al. High-resolution 3D isotropic MR imaging of mouse flank tumours obtained in vivo with solenoid RF micro-coil. Phys Med Biol 2008;53:505–13.CrossRefPubMedGoogle Scholar
  85. 85.
    Bock M, Woenne EC, Kiessling F, Semmler W, Umathum R. High-resolution MRI of implanted skin chambers with integrated coils. Proc Intl Soc Magn Reson Med 2008;16:289.Google Scholar
  86. 86.
    Lin CY, Lin MH, Cheung WM, Lin TN, Chen JH, Chang C. In vivo cerebromicrovasculatural visualization using 3D DeltaR2-based microscopy of magnetic resonance angiography (3DDeltaR2-mMRA). Neuroimage 2009;45:824–31.CrossRefPubMedGoogle Scholar
  87. 87.
    Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, et al. Vessel size imaging. Magn Reson Med 2001;45:397–408.CrossRefPubMedGoogle Scholar
  88. 88.
    Zwick S, Strecker R, Kiselev V, Gall P, Huppert J, Palmowski M, et al. Assessment of vascular remodeling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imaging 2009;29:1125–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fabian Kiessling
    • 1
  • Daniel Razansky
    • 2
  • Frauke Alves
    • 3
    • 4
  1. 1.Experimental Molecular ImagingUniversity of Aachen (RWTH)AachenGermany
  2. 2.Institute for Biological and Medical ImagingTechnical University of Munich and Helmholtz Center MunichMunichGermany
  3. 3.Department of Haematology and OncologyUniversity Medical CenterGoettingenGermany
  4. 4.Department of Molecular Biology of Neuronal SignalsMax-Planck-Institute for Experimental MedicineGoettingenGermany

Personalised recommendations