A review on the clinical uses of SPECT/CT

  • Giuliano Mariani
  • Laura Bruselli
  • Torsten Kuwert
  • Edmund E. Kim
  • Albert Flotats
  • Ora Israel
  • Maurizio Dondi
  • Naoyuki Watanabe
Review Article


In the era when positron emission tomography (PET) seems to constitute the most advanced application of nuclear medicine imaging, still the conventional procedure of single photon emission computed tomography (SPECT) is far from being obsolete, especially if combined with computed tomography (CT). In fact, this dual modality imaging technique (SPECT/CT) lends itself to a wide variety of useful diagnostic applications whose clinical impact is in most instances already well established, while the evidence is growing for newer applications. The increasing availability of new hybrid SPECT/CT devices with advanced technology offers the opportunity to shorten acquisition time and to provide accurate attenuation correction and fusion imaging. In this review we analyse and discuss the capabilities of SPECT/CT for improving sensitivity and specificity in the imaging of both oncological and non-oncological diseases. The main advantages of SPECT/CT are represented by better attenuation correction, increased specificity, and accurate depiction of the localization of disease and of possible involvement of adjacent tissues. Endocrine and neuroendocrine tumours are accurately localized and characterized by SPECT/CT, as also are solitary pulmonary nodules and lung cancers, brain tumours, lymphoma, prostate cancer, malignant and benign bone lesions, and infection. Furthermore, hybrid SPECT/CT imaging is especially suited to support the increasing applications of minimally invasive surgery, as well as to precisely define the diagnostic and prognostic profile of cardiovascular patients. Finally, the applications of SPECT/CT to other clinical disorders or malignant tumours is currently under extensive investigation, with encouraging results in terms of diagnostic accuracy.


SPECT/CT Hybrid imaging Attenuation correction Diagnostic specificity Localization and extent of disease Malignant and benign disorders 


  1. 1.
    Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008;38:177–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, et al. SPECT/CT. J Nucl Med 2008;49:1305–19 [Erratum in: J Nucl Med 2008;49:1407].PubMedCrossRefGoogle Scholar
  3. 3.
    Sawyer LJ, Starritt HC, Hiscock SC, Evans MJ. Effective doses to patients from CT acquisitions on the GE Infinia Hawkeye: a comparison of calculation methods. Nucl Med Commun 2008;29:144–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48:661–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Tharp K, Israel O, Hausmann J, Bettman L, Martin WH, Daitzchman M, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging 2004;31:1435–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am J Roentgenol 2008;191:1785–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med 2008;49:1952–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmidt D, Szikszai A, Linke R, Bautz W, Kuwert T. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med 2009;50:18–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Spanu A, Solinas ME, Chessa F, Sanna D, Nuvoli S, Madeddu G. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med 2009;50:184–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang H, Fu HL, Li JN, Zou RJ, Gu ZH, Wu JC. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging 2009;33:49–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Patel CN, Famid U, Chowdhury FU, Scarsbrook AF. Clinical utility of hybrid SPECT-CT in endocrine neoplasia. AJR Am J Roentgenol 2008;190:815–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Learoyd DL, Roach PJ, Briggs GM, Delbridge LW, Wilmshurst EG, Robinson BG. Technetium-99m-sestamibi scanning in recurrent medullary thyroid carcinoma. J Nucl Med 1997;38:227–30.PubMedGoogle Scholar
  13. 13.
    Behr TM, Gratz S, Markus PM, Dunn RM, Hüfner M, Schauer A, et al. Anti-carcinoembryonic antigen antibodies versus somatostatin analogs in the detection of metastatic medullary thyroid carcinoma: are carcinoembryonic antigen and somatostatin receptor expression prognostic factors? Cancer 1997;80:2436–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Rufini V, Castaldi P, Treglia G, Perotti G, Gross MD, Al-Nahhas A, et al. Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. Biomed Pharmacother 2008;62:139–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Castellani MR, Seregni E, Maccauro M, Chiesa C, Aliberti G, Orunesu E, et al. MIBG for diagnosis and therapy of medullary thyroid carcinoma: is there still a role? Q J Nucl Med Mol Imaging 2008;52:430–40.PubMedGoogle Scholar
  16. 16.
    Behr TM, Béhé MP. Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med 2002;32:97–109.PubMedCrossRefGoogle Scholar
  17. 17.
    Gotthardt M, Béhé MP, Beuter D, Battmann A, Bauhofer A, Schurrat T, et al. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2006;33:1273–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumors. Clin Endocrinol (Oxf) 2003;59:565–73.CrossRefGoogle Scholar
  19. 19.
    Arslan N, Ilgan S, Yuksel D, Serdengecti M, Bulakbasi N, Ugur O, et al. Comparison of In-111 octreotide and Tc-99m (V) DMSA scintigraphy in the detection of medullary thyroid tumor foci in patients with elevated levels of tumor markers after surgery. Clin Nucl Med 2001;26:683–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Lamberts SW, Chayvialle JA, Krenning EP. The visualization of gastroenteropancreatic endocrine tumors. Metabolism 1992;41:111–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004;25:458–511.PubMedCrossRefGoogle Scholar
  22. 22.
    Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med 2006;36:228–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging 2008;52:323–33.PubMedGoogle Scholar
  24. 24.
    Bodei L, Ferone D, Grana CM, Cremonesi M, Signore A, Dierckx RA, et al. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest 2009;32:360–9.PubMedGoogle Scholar
  25. 25.
    Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 2006;47:1467–75.PubMedGoogle Scholar
  26. 26.
    Forrer F, Mueller-Brand J, Maecke H. Pre-therapeutic dosimetry with radiolabelled somatostatin analogues in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2005;32:511–2.PubMedCrossRefGoogle Scholar
  27. 27.
    Barone R, Walrand S, Konijnenberg M, Valkema R, Kvols LK, Krenning EP, et al. Therapy using labelled somatostatin analogues: comparison of the absorbed doses with 111In-DTPA-D-Phe1-octreotide and yttrium-labelled DOTA-D-Phe1-Tyr3-octreotide. Nucl Med Commun 2008;29:283–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol 2008;63:241–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Amar L, Servais A, Gimenez-Roqueplo AP, Zinzindohoue F, Chatellier G, Plouin PF. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab 2005;90:2110–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Mukherjee JJ, Kaltsas GA, Islam N, Plowman PN, Foley R, Hikmat J, et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with 131I-meta-iodobenzylguanidine (131I-mIBG). Clin Endocrinol (Oxf) 2001;55:47–60.CrossRefGoogle Scholar
  31. 31.
    Maurea S, Cuocolo A, Reynolds JC, Neumann RD, Salvatore M. Diagnostic imaging in patients with paragangliomas. Computed tomography, magnetic resonance and MIBG scintigraphy comparison. Q J Nucl Med 1996;40:365–71.PubMedGoogle Scholar
  32. 32.
    Bhatia KS, Ismail MM, Sahdev A, Rockall AG, Hogarth K, Canizales A, et al. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin Endocrinol (Oxf) 2008;69:181–8.CrossRefGoogle Scholar
  33. 33.
    Gao YC, Lu HK, Luo QY, Chen LB, Ding Y, Zhu RS. Comparison of free plasma metanephrines enzyme immunoassay with 131I-MIBG scan in diagnosis of pheochromocytoma. Clin Exp Med 2008;8:87–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol 2008;190:1085–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Schillaci O. Hybrid SPECT/CT: a new era for SPECT imaging? Eur J Nucl Med Mol Imaging 2005;32:521–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Krausz Y, Israel O. Single-photon emission computed tomography/computed tomography in endocrinology. Semin Nucl Med 2006;36:267–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Ozer S, Dobrozemsky G, Kienast O, Beheshti M, Becherer A, Niederle B, et al. Value of combined XCT/SPECT technology for avoiding false positive planar 123I-MIBG scintigraphy. Nuklearmedizin 2004;43:164–70.PubMedGoogle Scholar
  38. 38.
    Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 2003;33:205–18.PubMedCrossRefGoogle Scholar
  39. 39.
    Rayner B. Primary aldosteronism and aldosterone-associated hypertension. J Clin Pathol 2008;61:825–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Avram AM, Fig LM, Gross MD. Adrenal gland scintigraphy. Semin Nucl Med 2006;36:212–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Gross MD, Avram A, Fig LM, Rubello D. Contemporary adrenal scintigraphy. Eur J Nucl Med Mol Imaging 2007;34:547–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Yen RF, Wu VC, Liu KL, Cheng MF, Wu YW, Chueh SC, et al. 131I-6beta-iodomethyl-19-norcholesterol SPECT/CT for primary aldosteronism patients with inconclusive adrenal veneous sampling and CT results. J Nucl Med 2009;50:1631–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Mariani G, Gulec SA, Rubello D, Boni G, Puccini M, Pelizzo MR, et al. Preoperative localization and radioguided parathyroid surgery. J Nucl Med 2003;44:1443–58.PubMedGoogle Scholar
  44. 44.
    Rubello D, Gross MD, Mariani G, AL-Nahhas A. Scintigraphic techniques in primary hyperparathyroidism: from pre-operative localisation to intra-operative imaging. Eur J Nucl Med Mol Imaging 2007;34:926–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Lorberboym M, Minski I, Macadziob S, Nikolov G, Schachter P. Incremental diagnostic value of preoperative 99mTc-MIBI SPECT in patients with a parathyroid adenoma. J Nucl Med 2003;44:904–8.PubMedGoogle Scholar
  46. 46.
    Papathanassiou D, Flament JB, Pochart JM, Patey M, Marty H, Liehn JC, et al. SPECT/CT in localization of parathyroid adenoma or hyperplasia in patients with previous neck surgery. Clin Nucl Med 2008;33:394–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Lavely WC, Goetze S, Friedman KP, Leal JP, Zhang Z, Garret-Mayer E, et al. Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase (99m)Tc-sestamibi parathyroid scintigraphy. J Nucl Med 2007;48:1084–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Serra A, Bolasco P, Satta L, Nicolosi A, Uccheddu A, Piga M. Role of SPECT/CT in the preoperative assessment of hyperparathyroid patients. Radiol Med 2006;111:999–1008.PubMedCrossRefGoogle Scholar
  49. 49.
    Harris L, Yoo J, Driedger A, Fung K, Franklin J, Gray D, et al. Accuracy of technetium-99m SPECT-CT hybrid images in predicting the precise intraoperative anatomical location of parathyroid adenomas. Head Neck 2008;30:509–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005;47:1356–67.Google Scholar
  51. 51.
    Horger M, Eschmann SM, Pfannenberg C, Vonthein R, Besenfelder H, Claussen CD, et al. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol 2004;183:655–61.PubMedGoogle Scholar
  52. 52.
    Utsunomiya D, Shiraishi S, Imuta M, Tomiguchi S, Kawanaka K, Morishita S, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 2006;238:264–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Römer W, Nömayr A, Uder M, Bautz W, Kuwert T. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 2006;47:1102–6.PubMedGoogle Scholar
  54. 54.
    Strobel K, Burger C, Seifert B, Husarik DB, Soyka JD, Hany TF. Characterization of focal bone lesions in the axial skeleton: performance of planar bone scintigraphy compared with SPECT and SPECT fused with CT. AJR Am J Roentgenol 2007;188:W467–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Genovesi D, Di Martino F, Loi A, Lazzeri M, Boni G, Mariani G. Use of SPECT/CT for optimizing dosimetry estimates in patients with metastatic bone disease treated with 153Sm-EDTMP. Q J Nucl Med Mol Imaging 2007;51:380.Google Scholar
  56. 56.
    Ferran N, Ricart Y, Lopez M, Martinez-Ballarin I, Roca M, Gámez C, et al. Characterization of radiologically indeterminate lung lesions: 99mTc-depreotide SPECT versus 18F-FDG PET. Nucl Med Commun 2006;27:507–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology 2008;246:772–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Sergiacomi G, Schillaci O, Leporace M, Laviani F, Carlani M, Manni C, et al. Integrated multislice CT and Tc-99m sestamibi SPECT-CT evaluation of solitary pulmonary nodules. Radiol Med 2006;111:213–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Israel O, Krausz Y. SPECT/CT in tumor imaging. In: von Shultness GK, editor. Clinical molecular anatomic imaging. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 447–62.Google Scholar
  60. 60.
    Schillaci O. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma. Semin Nucl Med 2006;36:275–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Palmedo H, Biersack HJ, Lastoria S, Maublant J, Prats E, Stegner HE, et al. Scintimammography with technetium-99m methoxyisobutylisonitrile: results of a prospective European multicentre trial. Eur J Nucl Med 1998;25:375–85.PubMedCrossRefGoogle Scholar
  62. 62.
    Grosso M, Chiacchio S, Bianchi F, Traino C, Marini C, Cilotti A, et al. Comparison between 99mTc-sestamibi scintimammography and X-ray mammography in the characterization of clusters of microcalcifications: a prospective long-term study. Anticancer Res 2009;29:4251–7.PubMedGoogle Scholar
  63. 63.
    Schillaci O, Danieli R, Filippi L, Romano P, Cossu E, Manni C, et al. Scintimammography with a hybrid SPECT/CT imaging system. Anticancer Res 2007;27:557–62.PubMedGoogle Scholar
  64. 64.
    Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008.Google Scholar
  65. 65.
    Mariani G, Moresco L, Viale G, Villa G, Bagnasco M, Canavese G, et al. Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med 2001;42:1198–215.PubMedGoogle Scholar
  66. 66.
    Mariani G, Gipponi M, Moresco L, Villa G, Bartolomei M, Mazzarol G, et al. Radioguided sentinel lymph node biopsy in malignant cutaneous melanoma. J Nucl Med 2002;43:811–27.PubMedGoogle Scholar
  67. 67.
    van der Ploeg IM, Valdés Olmos RA, Kroon BB, Wouters MW, van den Brekel MW, Vogel WV, et al. The yield of SPECT/CT for anatomical lymphatic mapping in patients with melanoma. Ann Surg Oncol 2009;16:1537–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Gallowitsch HJ, Kraschl P, Igerc I, Hussein T, Kresnik E, Mikosch P, et al. Sentinel node SPECT-CT in breast cancer. Can we expect any additional and clinically relevant information? Nuklearmedizin 2007;46:252–6.PubMedGoogle Scholar
  69. 69.
    van der Ploeg IM, Nieweg OE, Kroon BB, Rutgers EJ, Baas-Vrancken Peeters MJ, Vogel WV, et al. The yield of SPECT/CT for anatomical lymphatic mapping in patients with breast cancer. Eur J Nucl Med Mol Imaging 2009;36:903–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Lerman H, Lievshitz G, Zak O, Metser U, Schneebaum S, Even-Sapir E. Improved sentinel node identification by SPECT/CT in overweight patients with breast cancer. J Nucl Med 2007;48:201–6.PubMedGoogle Scholar
  71. 71.
    Lopez R, Payoux P, Gantet P, Esquerré JP, Boutault F, Paoli JR. Multimodal image registration for localization of sentinel nodes in head and neck squamous cell carcinoma. J Oral Maxillofac Surg 2004;62:1497–504.PubMedCrossRefGoogle Scholar
  72. 72.
    Nomori H, Ikeda K, Mori T, Shiraishi S, Kobayashi H, Iwatani K, et al. Sentinel node identification in clinical stage Ia non-small cell lung cancer by a combined single photon emission computed tomography/computed tomography system. J Thorac Cardiovasc Surg 2007;134:182–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Kretschmer L, Altenvoerde G, Meller J, Zutt M, Funke M, Neumann C, et al. Dynamic lymphoscintigraphy and image fusion of SPECT and pelvic CT-scans allow mapping of aberrant pelvic sentinel lymph nodes in malignant melanoma. Eur J Cancer 2003;39:175–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Leijte JA, van der Ploeg IM, Valdés Olmos RA, Nieweg OE, Horenblas S. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT. J Nucl Med 2009;50:364–7.PubMedCrossRefGoogle Scholar
  75. 75.
    van der Ploeg IM, Kroon BB, Valdés Olmos RA, Nieweg OE. Evaluation of lymphatic drainage patterns to the groin and implications for the extent of groin dissection in melanoma patients. Ann Surg Oncol 2009;16:2994–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Schaefer NG, Hany TF, Taverna C, Seifert B, Stumpe KDM, von Schulthess GK, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging—do we need contrast-enhanced CT? Radiology 2004;232:823–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Front D, Israel O, Epelbaum R, Ben Haim S, Sapir EE, Jerushalmi J, et al. Ga-67 SPECT before and after treatment of lymphoma. Radiology 1990;175:515–9.PubMedGoogle Scholar
  78. 78.
    Front D, Bar-Shalom R, Mor M, Haim N, Epelbaum R, Frenkel A, et al. Hodgkin disease: prediction of outcome with 67Ga scintigraphy after one cycle of chemotherapy. Radiology 1999;210:487–91.PubMedGoogle Scholar
  79. 79.
    Chajari M, Lacroix J, Peny AM, Chesnay E, Batalla A, Henry-Amar M, et al. Gallium-67 scintigraphy in lymphoma: is there a benefit of image fusion with computed tomography? Eur J Nucl Med Mol Imaging 2002;29:380–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Palumbo B, Sivolella S, Palumbo I, Liberati AM, Palumbo R. 67Ga-SPECT/CT with a hybrid system in the clinical management of lymphoma. Eur J Nucl Med Mol Imaging 2005;32:1011–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in 131I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2005;32:458–69.PubMedCrossRefGoogle Scholar
  82. 82.
    Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 2008;10:361–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Chinn RJ, Wilkinson ID, Hall-Craggs MA, Paley MN, Miller RF, Kendall BE, et al. Toxoplasmosis and primary central nervous system lymphoma in HIV infection: diagnosis with MR spectroscopy. Radiology 1995;197:649–54.PubMedGoogle Scholar
  84. 84.
    Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004;45:1931–8.PubMedGoogle Scholar
  85. 85.
    Astner S, Grosu A, Weber W, Wester H, Schwaiger M, Molls M. O-(2-[18F]fluorethyl)-L-tyrosine compared to L-(methyl-11C) methionine in positron emission tomography for tumor volume delineation of gliomas and metastases. Int J Radiat Oncol Biol Phys 2005;63:S65.Google Scholar
  86. 86.
    Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006;47:904–11.PubMedGoogle Scholar
  87. 87.
    Huang Z, Zuo C, Guan Y, Zhang Z, Liu P, Xue F, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun 2008;29:354–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Filippi L, Schillaci O, Santoni R, Manni C, Danieli R, Simonetti G. Usefulness of SPECT/CT with a hybrid camera for the functional anatomical mapping of primary brain tumors by [Tc99m] tetrofosmin. Cancer Biother Radiopharm 2006;21:41–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Schillaci O, Filippi L, Manni C, Santoni R. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med 2007;37:34–47.PubMedCrossRefGoogle Scholar
  90. 90.
    Hemm S, Vayssiere N, Zanca M, Ravel P, Coubes P. Thallium SPECT-based stereotactic targeting for brain tumor biopsies. A technical note. Stereotact Funct Neurosurg 2004;82:70–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Kneifel S, Bernhardt P, Uusijärvi H, Good S, Plasswilm L, Buitrago-Téllez C, et al. Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas. Eur J Nucl Med Mol Imaging 2007;34:1388–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Machac J, Heiba S, Zhang Z, Weintraub J, Nowakowski F, Stangl A, et al. Value of planar and SPECT/CT Tc-99m MAA liver perfusion imaging in planning of yttrium-90 Sir Sphere therapy of tumors of the liver. J Nucl Med 2008;49(Suppl 1):144P.Google Scholar
  93. 93.
    Hamami ME, Poeppel TD, Müller S, Heusner T, Bockisch A, Hilgard P, et al. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med 2009;50:688–92.PubMedCrossRefGoogle Scholar
  94. 94.
    Schillaci O, Danieli R, Manni C, Capoccetti F, Simonetti G. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera. Eur J Nucl Med Mol Imaging 2004;31:1011–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Pucar D, Sella T, Schöder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol 2008;18:87–97.PubMedCrossRefGoogle Scholar
  96. 96.
    Manyak MJ, Hinkle GH, Olsen JO, Chiaccherini RP, Partin AW, Piantadosi S, et al. Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology 1999;54:1058–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Haseman MK, Rosenthal SA, Kipper SL, Trout JR, Manyak MJ. Central abdominal uptake of indium-111 capromab pendetide (ProstaScint) predicts for poor prognosis in patients with prostate cancer. Urology 2007;70:303–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Ellis RJ, Zhou EH, Fu P, Kaminsky DA, Sodee DB, Faulhaber PF, et al. Single photon emission computerized tomography with capromab pendetide plus computerized tomography image set co-registration independently predicts biochemical failure. J Urol 2008;179:1768–73.PubMedCrossRefGoogle Scholar
  99. 99.
    Ellis RJ, Zhou H, Kaminsky DA, Fu P, Kim EY, Sodee DB, et al. Rectal morbidity after permanent prostate brachytherapy with dose escalation to biologic target volumes identified by SPECT/CT fusion. Brachytherapy 2007;6:149–56.PubMedCrossRefGoogle Scholar
  100. 100.
    Jani AB, Spelbring D, Hamilton R, Blend MJ, Pelizzari C, Brendler C, et al. Impact of radioimmunoscintigraphy on definition of clinical target volume for radiotherapy after prostatectomy. J Nucl Med 2004;45:238–46.PubMedGoogle Scholar
  101. 101.
    Kelty NL, Holder LE, Khan SH. Dual-isotope protocol for indium-111 capromab pendetide monoclonal antibody imaging. J Nucl Med Technol 1998;26:174–7.PubMedGoogle Scholar
  102. 102.
    Wong TZ, Turkington TG, Polascik TJ, Coleman RE. ProstaScint (capromab pendetide) imaging using hybrid gamma camera-CT technology. AJR Am J Roentgenol 2005;184:676–80.PubMedGoogle Scholar
  103. 103.
    Römer W, Olk A, Hennig FF, Bautz W, Kuwert T. Assessment of aseptic loosening of the acetabular component in a total hip replacement with 99mTc-DPD-SPECT/spiral-CT hybrid imaging. Nuklearmedizin 2005;44:N58–60.PubMedGoogle Scholar
  104. 104.
    Traughber PD, Havlina JM Jr. Bilateral pedicle stress fractures: SPECT and CT features. J Comput Assist Tomogr 1991;15:338–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Dore F, Filippi L, Biasotto M, Chiandussi S, Cavalli F, Di Lenarda R. Bone scintigraphy and SPECT/CT of bisphosphonate-induced osteonecrosis of the jaw. J Nucl Med 2009;50:30–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Even-Sapir E, Flusser G, Lerman H, Lievshitz G, Metser U. SPECT/multislice low-dose CT: a clinically relevant constituent in the imaging algorithm of nononcologic patients referred for bone scintigraphy. J Nucl Med 2007;48:319–24.PubMedGoogle Scholar
  107. 107.
    Scharf S. SPECT/CT imaging in general orthopedic practice. Semin Nucl Med 2009;39:293–307.PubMedCrossRefGoogle Scholar
  108. 108.
    El-Maghraby TA, Moustafa HM, Pauwels EK. Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q J Nucl Med Mol Imaging 2006;50:167–92.PubMedGoogle Scholar
  109. 109.
    Prandini N, Lazzeri E, Rossi B, Erba P, Parisella MG, Signore A. Nuclear medicine imaging of bone infections. Nucl Med Commun 2006;27:633–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Iyengar KP, Vinjamuri S. Role of 99mTc sulesomab in the diagnosis of prosthetic joint infections. Nucl Med Commun 2005;26:489–96.PubMedCrossRefGoogle Scholar
  111. 111.
    Kaisidis A, Megas P, Apostolopoulos D, Spiridonidis T, Koumoundourou D, Zouboulis P, et al. Diagnosis of septic loosening of hip prosthesis with LeukoScan. SPECT scan with 99mTc-labeled monoclonal antibodies. Orthopade 2005;34:462–9. German.PubMedCrossRefGoogle Scholar
  112. 112.
    Sierra JM, Rodriguez-Puig D, Soriano A, Mensa J, Piera C, Vila J. Accumulation of 99mTc-ciprofloxacin in Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008;52:2691–2.PubMedCrossRefGoogle Scholar
  113. 113.
    Lupetti A, Welling MM, Pauwels EK, Nibbering PH. Detection of fungal infections using radiolabeled antifungal agents. Curr Drug Targets 2005;6:945–54.PubMedCrossRefGoogle Scholar
  114. 114.
    Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, et al. SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 2006;47:587–94.PubMedGoogle Scholar
  115. 115.
    Ingui CJ, Shah NP, Oates ME. Infection scintigraphy: added value of single-photon emission computed tomography/computed tomography fusion compared with traditional analysis. J Comput Assist Tomogr 2007;31:375–80.PubMedCrossRefGoogle Scholar
  116. 116.
    Grubstein A, Bernstine H, Steinmetz AP. Chest CT and gallium-67 SPECT scintigraphy scan co-registration in a post-heart transplantation patient with unresolved fever. Isr Med Assoc J 2007;9:827–8.PubMedGoogle Scholar
  117. 117.
    Bajaj SK, Seitz JP, Qing F. Diagnosis of acute bacterial prostatitis by Ga-67 scintigraphy and SPECT-CT. Clin Nucl Med 2008;33:813–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Filippi L, Schillaci O. Usefulness of hybrid SPECT/CT in 99mTc-HMPAO-labeled leukocyte scintigraphy for bone and joint infections. J Nucl Med 2006;47:1908–13.PubMedGoogle Scholar
  119. 119.
    Horger M, Eschmann SM, Pfannenberg C, Storek D, Dammann F, Vonthein R, et al. The value of SPET/CT in chronic osteomyelitis. Eur J Nucl Med Mol Imaging 2003;30:1665–73.PubMedCrossRefGoogle Scholar
  120. 120.
    Lazzeri E, Erba PA, Perri M, Tascini C, Doria R, Dell’Anno B. Role of one-step radiolabeled Biotin SPECT/CT in the diagnosis of spinal infection. J Nucl Med 2007;48:280P.Google Scholar
  121. 121.
    Feingold DL, Caliendo FJ, Chinn BT, Notaro JR, Oliver GC, Salvati EP, et al. Does hemodynamic instability predict positive technetium-labeled red blood cell scintigraphy in patients with acute lower gastrointestinal bleeding? A review of 50 patients. Dis Colon Rectum 2005;48:1001–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Yama N, Ezoe E, Kimura Y, Mukaiya M, Fujimori K, Kurimoto Y, et al. Localization of intestinal bleeding using a fusion of Tc-99m-labeled RBC SPECT and X-ray CT. Clin Nucl Med 2005;30:488–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Kimura Y, Yama N, Isobe M, Nobuoka T, Furuhata T, Asai Y, et al. A novel method for the detection and the localization of intestinal bleeding using a fusion image of Tc-99m-labeled RBC SPECT and X-ray CT. J Abdom Emerg Med 2006;26:387–9.Google Scholar
  124. 124.
    Schillaci O, Spanu A, Tagliabue L, Filippi L, Danieli R, Palumbo B, et al. SPECT/CT with a hybrid imaging system in the study of lower gastrointestinal bleeding with technetium-99m red blood cells. Q J Nucl Med Mol Imaging 2009;53:281–9.PubMedGoogle Scholar
  125. 125.
    Papathanassiou D, Liehn JC, Menéroux B, Amans J, Domange-Testard A, Belouadah M, et al. SPECT-CT of Meckel diverticulum. Clin Nucl Med 2007;32:218–20.PubMedCrossRefGoogle Scholar
  126. 126.
    Schoepf UJ, Goldhaber SZ, Costello P. Spiral computed tomography for acute pulmonary embolism. Circulation 2004;109:2160–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Miniati M, Marini C, Allescia G, Tonelli L, Formichi B, Prediletto R, et al. Non-invasive diagnosis of pulmonary embolism. Int J Cardiol 1998;65:S83–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Reid JH, Coche EE, Inoue T, Kim EE, Dondi M, Watanabe N, et al. Is the lung scan alive and well? Facts and controversies in defining the role of lung scintigraphy for the diagnosis of pulmonary thromboembolism in the era of MDCT. Eur J Nucl Med Mol Imaging 2009;36:505–21.PubMedCrossRefGoogle Scholar
  129. 129.
    Reinartz P, Wildberger JE, Schaefer W, Nowak B, Mahnken AH, Buell U. Tomographic imaging in the diagnosis of pulmonary embolism: a comparison between V/Q lung scintigraphy in SPECT technique and multislice spiral CT. J Nucl Med 2004;45:1501–8.PubMedGoogle Scholar
  130. 130.
    Hata T, Ikeda M, Nakamori S, Suzuki R, Kim T, Yasui M, et al. Single-photon emission computed tomography in the screening for postoperative pulmonary embolism. Dig Dis Sci 2006;51:2073–80.PubMedCrossRefGoogle Scholar
  131. 131.
    Zaki M, Suga K, Kawakami Y, Yamashita T, Shimizu K, Seto A, et al. Preferential location of acute pulmonary thromboembolism induced consolidative opacities: assessment with respiratory gated perfusion SPECT-CT fusion images. Nucl Med Commun 2005;26:465–74.PubMedCrossRefGoogle Scholar
  132. 132.
    Suga K, Kawakami Y, Iwanaga H, Tokuda O, Matsunaga N. Automated breath-hold perfusion SPECT/CT fusion images of the lungs. AJR Am J Roentgenol 2007;189:455–63.PubMedCrossRefGoogle Scholar
  133. 133.
    Gimelli A, Rossi G, Landi P, Marzullo P, Iervasi G, L’abbate A, et al. Stress/rest myocardial perfusion abnormalities by gated SPECT: still the best predictor of cardiac events in stable ischemic heart disease. J Nucl Med 2009;50:546–53.PubMedCrossRefGoogle Scholar
  134. 134.
    Heller EN, DeMan P, Liu YH, Dione DP, Zubal IG, Wackers FJ, et al. Extracardiac activity complicates quantitative cardiac SPECT imaging using a simultaneous transmission-emission approach. J Nucl Med 1997;38:1882–90.PubMedGoogle Scholar
  135. 135.
    Utsunomiya D, Tomiguchi S, Shiraishi S, Yamada K, Honda T, Kawanaka K, et al. Initial experience with X-ray CT based attenuation correction in myocardial perfusion SPECT imaging using a combined SPECT/CT system. Ann Nucl Med 2005;19:485–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 2005;46:1294–300.PubMedGoogle Scholar
  137. 137.
    Hacker M, Jakobs T, Hack N, Nikolau K, Becker C, von Ziegler F, et al. Combined use of 64-slice computed tomography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 2007;46:29–35.PubMedGoogle Scholar
  138. 138.
    Hacker M, Jakobs T, Matthiesen F, Nikolaou K, Becker C, Knez A, et al. Combined functional and morphological imaging consisitng of gated perfusion SPECT and 16-detector multislice spiral CT angiography in the noninvasive evaluation of coronary artery disease: first experience. Clin Imaging 2007;31:313–20.PubMedCrossRefGoogle Scholar
  139. 139.
    Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 2007;49:1059–67.PubMedCrossRefGoogle Scholar
  140. 140.
    Gaemperli O, Schepis T, Valenta I, Husmann L, Scheffel H, Duerst V, et al. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med 2007;48:696–703.PubMedCrossRefGoogle Scholar
  141. 141.
    Gaemperli O, Schepis T, Kalff V, Namdar M, Valenta I, Stefani L, et al. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 2007;34:1097–106.PubMedCrossRefGoogle Scholar
  142. 142.
    Hagan I, Hopkins R, Lyburn I. Superior demonstration of splenosis by heat-denatured Tc-99m red blood cell scintigraphy compared with Tc-99m sulfur colloid scintigraphy. Clin Nucl Med 2006;31:463–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Horger M, Eschmann SM, Lengerke C, Claussen CD, Pfannenberg C, Bares R. Improved detection of splenosis in patients with haematological disorders: the role of combined transmission-emission tomography. Eur J Nucl Med Mol Imaging 2003;30:316–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Alvarez R, Diehl KM, Avram A, Brown R, Piert M. Localization of splenosis using 99mTc-damaged red blood cell SPECT/CT and intraoperative gamma probe measurements. Eur J Nucl Med Mol Imaging 2007;34:969.PubMedCrossRefGoogle Scholar
  145. 145.
    Hayashi M, Deguchi J, Utsunomiya K, Yamada M, Komori T, Takeuchi M, et al. Comparison of methods of attenuation and scatter correction in brain perfusion SPECT. J Nucl Med Technol 2005;33:224–9.PubMedGoogle Scholar
  146. 146.
    Van Laere K, Koole M, D’Asseler Y, Versijpt J, Audenaert K, Dumont F, et al. Automated stereotactic standardization of brain SPECT receptor data using single-photon transmission images. J Nucl Med 2001;42:361–75.PubMedGoogle Scholar
  147. 147.
    Sulkin TV, Cousens C. SPECTCT cerebral perfusion scintigraphy; is the low-dose CT component of diagnostic value? Clin Radiol 2008;63:289–98.PubMedCrossRefGoogle Scholar
  148. 148.
    Alavi A, Basu S. Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur J Nucl Med Mol Imaging 2008;35:1554–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Mariani G, Bruselli L, Duatti A. Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 2008;35:1560–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Gholamrezanejhad A, Mirpour S, Mariani G. Future of nuclear medicine: SPECT versus PET. J Nucl Med 2009;50:16N–8.PubMedGoogle Scholar
  151. 151.
    You JJ, Alter DA, Iron K, Slaughter PM, Kopp A, Przybysz R, et al. Diagnostic services in Ontario: descriptive analysis and jurisdictional review. Toronto: Institute for Clinical Evaluative Sciences; 2007.Google Scholar
  152. 152.
    Canadian Institute for Health Information. Medical imaging in Canada, 2007. Ottawa: Canadian Institute for Health Information; 2008.Google Scholar
  153. 153.
    Medical options. Report: European nuclear medicine patients visits show marginal fall. 2008. Available via: www.medicaloptions.co.uk/assets/MONucpress2008.doc. Accessed 26 May 2009.

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Giuliano Mariani
    • 1
  • Laura Bruselli
    • 1
  • Torsten Kuwert
    • 2
  • Edmund E. Kim
    • 3
  • Albert Flotats
    • 4
  • Ora Israel
    • 5
  • Maurizio Dondi
    • 6
  • Naoyuki Watanabe
    • 6
    • 7
  1. 1.Regional Center of Nuclear MedicineUniversity of Pisa Medical SchoolPisaItaly
  2. 2.Clinic of Nuclear MedicineFriedrich-Alexander-UniversityErlangen-NurembergGermany
  3. 3.Nuclear Medicine ServiceMD Anderson Cancer CenterHoustonUSA
  4. 4.Hospital de Sant Pau, Nuclear Medicine DepartmentUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Department of Nuclear MedicineRambam Health Care CampusHaifaIsrael
  6. 6.Nuclear Medicine Section, Division of Human HealthInternational Atomic Energy AgencyViennaAustria
  7. 7.Department of Radiological TechnologyGunma Prefectural College of Health SciencesGunmaJapan

Personalised recommendations