Advertisement

Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

  • Andrew Merron
  • Patrick Baril
  • Pilar Martin-Duque
  • Antonio de la Vieja
  • Lucile Tran
  • Arnaud Briat
  • Kevin J. Harrington
  • Iain A. McNeish
  • Georges VassauxEmail author
Original Article

Abstract

Purpose

In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma.

Methods

We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated.

Results

In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart.

Conclusion

This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects.

Keywords

Molecular imaging Oncolytic adenovirus Na/I symporter SPECT/CT Gene therapy 

Notes

Acknowledgments

The authors would like to thank Dr. Jhiang for providing the human NIS cDNA. This work was supported by grants from Cancer Research UK, the Medical Research Council, INSERM, la Ligue Nationale Contre le Cancer, the “Paris scientifiques régionaux” scheme of the Région Pays de la Loire, and the French National Cancer Institute (INCa, grant 0607-3D1615-66/AO INSERM).

References

  1. 1.
    Baril P, Martin-Duque P, Vassaux G. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br J Pharmacol 2009. doi: 10.1111/j.1476-5381.2009.00412.x.
  2. 2.
    Dadachova E, Carrasco N. The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med 2004;34:23–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Vassaux G, Groot-Wassink T. In vivo noninvasive imaging for gene therapy. J Biomed Biotechnol 2003;2003:92–101.CrossRefPubMedGoogle Scholar
  4. 4.
    Serganova I, Ponomarev V, Blasberg R. Human reporter genes: potential use in clinical studies. Nucl Med Biol 2007;34:791–807.CrossRefPubMedGoogle Scholar
  5. 5.
    Faivre J, Clerc J, Gerolami R, et al. Long-term radioiodine retention and regression of liver cancer after sodium iodide symporter gene transfer in wistar rats. Cancer Res 2004;64:8045–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Marsee DK, Shen DH, MacDonald LR, et al. Imaging of metastatic pulmonary tumors following NIS gene transfer using single photon emission computed tomography. Cancer Gene Ther 2004;11:121–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther 2004;11:1175–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Dohan O, Carrasco N. Advances in Na(+)/I(-) symporter (NIS) research in the thyroid and beyond. Mol Cell Endocrinol 2003;213:59–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Merron A, Peerlinck I, Martin-Duque P, et al. SPECT/CT imaging of oncolytic adenovirus propagation in tumours in vivo using the Na/I symporter as a reporter gene. Gene Ther 2007;14:1731–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002;13:1723–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Keith WN, Vassaux G. Noninvasive imaging of the transcriptional activities of human telomerase promoter fragments in mice. Cancer Res 2004;64:4906–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 2004;9:436–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Chisholm EJ, Vassaux G, Martin-Duque P, et al. Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res 2009;69:2655–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim HJ, Jeon YH, Kang JH, et al. In vivo long-term imaging and radioiodine therapy by sodium-iodide symporter gene expression using a lentiviral system containing ubiquitin C promoter. Cancer Biol Ther 2007;6:1130–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim KI, Chung JK, Kang JH, et al. Visualization of endogenous p53-mediated transcription in vivo using sodium iodide symporter. Clin Cancer Res 2005;11:123–8.PubMedGoogle Scholar
  16. 16.
    Yeom CJ, Chung JK, Kang JH, et al. Visualization of hypoxia-inducible factor-1 transcriptional activation in C6 glioma using luciferase and sodium iodide symporter genes. J Nucl Med 2008;49:1489–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Che J, Doubrovin M, Serganova I, et al. HSP70-inducible hNIS-IRES-eGFP reporter imaging: response to heat shock. Mol Imaging 2007;6:404–16.PubMedGoogle Scholar
  18. 18.
    Kim KI, Kang JH, Chung JK, et al. Doxorubicin enhances the expression of transgene under control of the CMV promoter in anaplastic thyroid carcinoma cells. J Nucl Med 2007;48:1553–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen L, Altman A, Mier W, Lu H, Zhu R, Haberkorn U. 99mTc-pertechnetate uptake in hepatoma cells due to tissue-specific human sodium iodide symporter gene expression. Nucl Med Biol 2006;33:575–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Hwang DW, Jang SJ, Kim YH, et al. Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds. Eur J Nucl Med Mol Imaging 2008;35:1887–98.CrossRefGoogle Scholar
  21. 21.
    Lee KH, Bae JS, Lee SC, et al. Evidence that myocardial Na/I symporter gene imaging does not perturb cardiac function. J Nucl Med 2006;47:1851–7.PubMedGoogle Scholar
  22. 22.
    Boland A, Ricard M, Opolon P, et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000;60:3484–92.PubMedGoogle Scholar
  23. 23.
    Montiel-Equihua CA, Martin-Duque P, de la Vieja A, et al. Targeting sodium/iodide symporter gene expression for estrogen-regulated imaging and therapy in breast cancer. Cancer Gene Ther 2008;15:465–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Goel A, Carlson SK, Classic KL, et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood 2007;110:2342–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Peerlinck I, Merron A, Baril P, et al. Targeted radionuclide therapy using a Wnt-targeted replicating adenovirus encoding the Na/I symporter. Clin Cancer Res 2009;15:6595–601.CrossRefPubMedGoogle Scholar
  26. 26.
    Barton KN, Stricker H, Brown SL, et al. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol Ther 2008;16:1761–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Kaplan JM. Adenovirus-based cancer gene therapy. Curr Gene Ther. 2005;5:595–605.CrossRefPubMedGoogle Scholar
  28. 28.
    Woo Y, Adusumilli PS, Fong Y. Advances in oncolytic viral therapy. Curr Opin Investig Drugs 2006;7:549–59.PubMedGoogle Scholar
  29. 29.
    Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000;19:2–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Gomez-Manzano C, Alonso MM, Yung WK, et al. Delta-24 increases the expression and activity of topoisomerase I and enhances the antiglioma effect of irinotecan. Clin Cancer Res 2006;12:556–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Lockley M, Fernandez M, Wang Y, et al. Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in icodextrin. Cancer Res 2006;66:989–98.CrossRefPubMedGoogle Scholar
  32. 32.
    Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004;103:1641–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Peerlinck I, Amini-Nik S, Phillips RK, et al. Therapeutic potential of replication-selective oncolytic adenoviruses on cells from familial and sporadic desmoid tumors. Clin Cancer Res 2008;14:6187–92.CrossRefPubMedGoogle Scholar
  34. 34.
    Gagnebin J, Brunori M, Otter M, Juillerat-Jeanneret L, Monnier P, Iggo R. A photosensitising adenovirus for photodynamic therapy. Gene Ther 1999;6:1742–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Vassaux G, Manson AL, Huxley C. Copy number-dependent expression of a YAC-cloned human CFTR gene in a human epithelial cell line. Gene Ther 1997;4:618–23.CrossRefPubMedGoogle Scholar
  36. 36.
    Coughlan L, Vallath S, Saha A, et al. In vivo retargeting of adenovirus type 5 to alphavbeta6 integrin results in reduced hepatotoxicity and improved tumor uptake following systemic delivery. J Virol 2009;83:6416–28.CrossRefPubMedGoogle Scholar
  37. 37.
    Martin-Duque P, Jezzard S, Kaftansis L, Vassaux G. Direct comparison of the insulating properties of two genetic elements in an adenoviral vector containing two different expression cassettes. Hum Gene Ther 2004;15:995–1002.CrossRefPubMedGoogle Scholar
  38. 38.
    Hingorani M, White CL, Merron A, et al. Inhibition of repair of radiation-induced DNA damage enhances gene expression from replication-defective adenoviral vectors. Cancer Res 2008;68:9771–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Aoi A, Watanabe Y, Mori S, Takahashi M, Vassaux G, Kodama T. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med Biol 2008;34:425–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Briat A, Vassaux G. A new transgenic mouse line to image chemically induced p53 activation in vivo. Cancer Sci 2008;99:683–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Baird SK, Aerts JL, Eddaoudi A, Lockley M, Lemoine NR, McNeish IA. Oncolytic adenoviral mutants induce a novel mode of programmed cell death in ovarian cancer. Oncogene 2008;27:3081–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Johnson M, Huyn S, Burton J, Sato M, Wu L. Differential biodistribution of adenoviral vector in vivo as monitored by bioluminescence imaging and quantitative polymerase chain reaction. Hum Gene Ther 2006;17:1262–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Page JG, Tian B, Schweikart K, et al. Identifying the safety profile of a novel infectivity-enhanced conditionally replicative adenovirus, Ad5-delta24-RGD, in anticipation of a phase I trial for recurrent ovarian cancer. Am J Obstet Gynecol 2007;196:389 e1–9; discussion e9–10.Google Scholar
  44. 44.
    Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993;67:5911–21.PubMedGoogle Scholar
  45. 45.
    Parks RJ, Graham FL. A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol 1997;71:3293–8.PubMedGoogle Scholar
  46. 46.
    Kennedy MA, Parks RJ. Adenovirus virion stability and the viral genome: size matters. Mol Ther 2009;17:1664–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrew Merron
    • 1
  • Patrick Baril
    • 2
    • 3
  • Pilar Martin-Duque
    • 4
  • Antonio de la Vieja
    • 5
  • Lucile Tran
    • 2
    • 3
  • Arnaud Briat
    • 6
  • Kevin J. Harrington
    • 7
  • Iain A. McNeish
    • 1
  • Georges Vassaux
    • 2
    • 3
    Email author
  1. 1.Centre for Molecular Oncology, Institute of CancerQueen Mary’s School of Medicine and DentistryLondonUK
  2. 2.INSERM U948CHU Hôtel DieuNantes Cedex1France
  3. 3.Institut des Maladies de l’Appareil DigestifCHU de NantesNantesFrance
  4. 4.I+CS/ Araid FundInstituto Aragonés de Ciencias de la SaludZaragozaSpain
  5. 5.Instituto de Investigaciones Biomédicas “Alberto Sols” C/Arturo Duperier 4MadridSpain
  6. 6.INSERM U877GrenobleFrance
  7. 7.Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK

Personalised recommendations