Recent advances in PET imaging for evaluation of Parkinson’s disease

  • Chrissa Sioka
  • Andreas Fotopoulos
  • Athanassios P. Kyritsis
Review Article

Abstract

Parkinson’s disease (PD) consists of loss of pigmented dopamine-secreting neurons in the pars compacta of the midbrain substantia nigra. These neurons project to the striatum (putamen and caudate nucleus) and their loss leads to alterations in the activity of the neural circuits that regulate movement. In a simplified model, two dopamine pathways are involved: the direct pathway, which is mediated through facilitation of the D1 receptors, and the indirect pathway through D2 receptors (inhibitory). Positron emission tomography (PET) tracers to image the presynaptic sites of the dopaminergic system include 6-[18F]FDOPA and 6-[18F]FMT, [11C]dihydrotetrabenazine, [11C]nomifensine and various radiolabelled cocaine derivatives. Postsynaptically, for the dopamine D1 subtype the most commonly used ligands are [11C]SCH 23390 or [11C]NNC 112 and for the D2 subtype [11C]raclopride, [11C]MNPA and [18F]DMFP. PET is a sensitive and specific non-invasive molecular imaging technique that may be helpful for evaluation of PD and its differential diagnosis from other parkinsonian syndromes.

Keywords

PET Dopamine D1 receptor D2 receptor Parkinson’s disease Parkinsonian syndrome 

References

  1. 1.
    Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79:368–76. 10.1136/jnnp.2007.131045 79/4/368 [pii].PubMedCrossRefGoogle Scholar
  2. 2.
    Burn DJ, Jaros E. Multiple system atrophy: cellular and molecular pathology. Mol Pathol 2001;54:419–26.PubMedGoogle Scholar
  3. 3.
    Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964;10:333–59.PubMedGoogle Scholar
  4. 4.
    Mahapatra RK, Edwards MJ, Schott JM, Bhatia KP. Corticobasal degeneration. Lancet Neurol 2004;3:736–43. 10.1016/S1474-4422(04)00936-6 S1474442204009366 [pii].PubMedCrossRefGoogle Scholar
  5. 5.
    Bogaerts V, Engelborghs S, Kumar-Singh S, Goossens D, Pickut B, van der Zee J, et al. A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain 2007;130:2277–91. 10.1093/brain/awm167 awm167 [pii].PubMedCrossRefGoogle Scholar
  6. 6.
    Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang GJ, Ding YS, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med 1996;37:1242–56.PubMedGoogle Scholar
  7. 7.
    Kassiou M, Banati R, Holsinger RM, Meikle S. Challenges in molecular imaging of Parkinson’s disease: a brief overview. Brain Res Bull 2009;78:105–8. 10.1016/j.brainresbull.2008.08.006 S0361-9230(08)00294-3 [pii].PubMedCrossRefGoogle Scholar
  8. 8.
    Momose T. Positron emission tomography with FDG and newly developed tracers for the assessment of brain metabolism and synaptic function in neurological disorders. Brain Nerve 2007;59:495–501. Japanese.PubMedGoogle Scholar
  9. 9.
    Moore RY, Whone AL, Brooks DJ. Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol Dis 2008;29:381–90. 10.1016/j.nbd.2007.09.004 S0969-9961(07)00218-5 [pii].PubMedCrossRefGoogle Scholar
  10. 10.
    Gjedde A. Receptor mapping in living human beings by means of positron emission tomography. Ugeskr Laeger 2001;163:5199–205. Danish.PubMedGoogle Scholar
  11. 11.
    Brooks DJ, Frey KA, Marek KL, Oakes D, Paty D, Prentice R, et al. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 2003;184 Suppl 1:S68–79. S0014488603004072 [pii].PubMedCrossRefGoogle Scholar
  12. 12.
    Kaasinen V, Maguire RP, Hundemer HP, Leenders KL. Corticostriatal covariance patterns of 6-[18F]fluoro-L-dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. J Neurol 2006;253:340–8. 10.1007/s00415-005-0993-7.PubMedCrossRefGoogle Scholar
  13. 13.
    Stoessl AJ. Positron emission tomography in premotor Parkinson’s disease. Parkinsonism Relat Disord 2007;13 Suppl 3:S421–4. S1353-8020(08)70041-5 [pii].PubMedCrossRefGoogle Scholar
  14. 14.
    Sossi V, de La Fuente-Fernández R, Holden JE, Doudet DJ, McKenzie J, Stoessl AJ, et al. Increase in dopamine turnover occurs early in Parkinson’s disease: evidence from a new modeling approach to PET 18 F-fluorodopa data. J Cereb Blood Flow Metab 2002;22:232–9. 10.1097/00004647-200202000-00011.PubMedCrossRefGoogle Scholar
  15. 15.
    Broussolle E, Dentresangle C, Landais P, Garcia-Larrea L, Pollak P, Croisile B, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson’s disease. J Neurol Sci 1999;166:141–51. S0022-510X(99)00127-6 [pii].PubMedCrossRefGoogle Scholar
  16. 16.
    Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114(Pt 5):2283–301.PubMedCrossRefGoogle Scholar
  17. 17.
    Brück A, Aalto S, Rauhala E, Bergman J, Marttila R, Rinne JO. A follow-up study on 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease shows nonlinear progression in the putamen. Mov Disord 2009;24:1009–15. 10.1002/mds.22484.PubMedCrossRefGoogle Scholar
  18. 18.
    Brück A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO. Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease: a two-year follow-up study. Mov Disord 2006;21:958–63. 10.1002/mds.20855.PubMedCrossRefGoogle Scholar
  19. 19.
    Koeppe RA, Gilman S, Junck L, Wernette K, Frey KA. Differentiating Alzheimer’s disease from dementia with Lewy bodies and Parkinson’s disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimers Dement 2008;4:S67–76. 10.1016/j.jalz.2007.11.016 S1552-5260(07)00657-7 [pii].PubMedCrossRefGoogle Scholar
  20. 20.
    de la Fuente-Fernández R, Sossi V, McCormick S, Schulzer M, Ruth TJ, Stoessl AJ. Visualizing vesicular dopamine dynamics in Parkinson’s disease. Synapse 2009;63:713–6. 10.1002/syn.20653.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47:493–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Brownell AL, Elmaleh DR, Meltzer PC, Shoup TM, Brownell GL, Fischman AJ, et al. Cocaine congeners as PET imaging probes for dopamine terminals. J Nucl Med 1996;37:1186–92.PubMedGoogle Scholar
  23. 23.
    Deterding TA, Votaw JR, Wang CK, Eshima D, Eshima L, Keil R, et al. Biodistribution and radiation dosimetry of the dopamine transporter ligand. J Nucl Med 2001;42:376–81.PubMedGoogle Scholar
  24. 24.
    Fischman AJ, Bonab AA, Babich JW, Livni E, Alpert NM, Meltzer PC, et al. [(11)C, (127)I] Altropane: a highly selective ligand for PET imaging of dopamine transporter sites. Synapse 2001;39:332–42. 10.1002/1098-2396(20010315)39:4<332::AID-SYN1017>3.0.CO;2-X [pii].PubMedCrossRefGoogle Scholar
  25. 25.
    Fischman AJ, Bonab AA, Babich JW, Palmer EP, Alpert NM, Elmaleh DR, et al. Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse 1998;29:128–41. 10.1002/(SICI)1098-2396(199806)29:2<128::AID-SYN4>3.0.CO;2-9 [pii].PubMedCrossRefGoogle Scholar
  26. 26.
    Nurmi E, Bergman J, Eskola O, Solin O, Hinkka SM, Sonninen P, et al. Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18F]CFT PET study. J Cereb Blood Flow Metab 2000;20:1604–9. 10.1097/00004647-200011000-00010.PubMedCrossRefGoogle Scholar
  27. 27.
    Nurmi E, Ruottinen HM, Kaasinen V, Bergman J, Haaparanta M, Solin O, et al. Progression in Parkinson’s disease: a positron emission tomography study with a dopamine transporter ligand [18F]CFT. Ann Neurol 2000;47:804–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Ribeiro MJ, Ricard M, Lièvre MA, Bourgeois S, Emond P, Gervais P, et al. Whole-body distribution and radiation dosimetry of the dopamine transporter radioligand [(11)C]PE2I in healthy volunteers. Nucl Med Biol 2007;34:465–70. S0969-8051(07)00047-9 [pii]. 10.1016/j.nucmedbio.2007.02.005.PubMedCrossRefGoogle Scholar
  29. 29.
    Rinne JO, Bergman J, Ruottinen H, Haaparanta M, Eronen E, Oikonen V, et al. Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson’s disease. Synapse 1999;31:119–24. 10.1002/(SICI)1098-2396(199902)31:2<119::AID-SYN4>3.0.CO;2-O [pii].PubMedCrossRefGoogle Scholar
  30. 30.
    Rinne OJ, Nurmi E, Ruottinen HM, Bergman J, Eskola O, Solin O. [(18)F]FDOPA and [(18)F]CFT are both sensitive PET markers to detect presynaptic dopaminergic hypofunction in early Parkinson’s disease. Synapse 2001;40:193–200. doi:10.1002/syn.1042.PubMedCrossRefGoogle Scholar
  31. 31.
    Emond P, Guilloteau D, Chalon S. PE2I: a radiopharmaceutical for in vivo exploration of the dopamine transporter. CNS Neurosci Ther 2008;14:47–64. 10.1111/j.1527-3458.2007.00033.x CNS033 [pii].PubMedCrossRefGoogle Scholar
  32. 32.
    Marié RM, Barré L, Rioux P, Allain P, Lechevalier B, Baron JC. PET imaging of neocortical monoaminergic terminals in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1995;9:55–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Aquilonius SM. What has PET told us about Parkinson’s disease? Acta Neurol Scand Suppl 1991;136:37–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Salmon E, Frackowiak RS. Functional metabolic neuroimaging by positron-emission tomography in man. Rev Neurol (Paris) 1990;146:459–77. French.Google Scholar
  35. 35.
    Eggers C, Hilker R, Burghaus L, Schumacher B, Heiss WD. High resolution positron emission tomography demonstrates basal ganglia dysfunction in early Parkinson’s disease. J Neurol Sci 2009;276:27–30. 10.1016/j.jns.2008.08.029 S0022-510X(08)00433-4 [pii].PubMedCrossRefGoogle Scholar
  36. 36.
    Wolfson LI, Leenders KL, Brown LL, Jones T. Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson’s disease. Neurology 1985;35:1399–405.PubMedGoogle Scholar
  37. 37.
    Martin WR, Beckman JH, Calne DB, Adam MJ, Harrop R, Rogers JG, et al. Cerebral glucose metabolism in Parkinson’s disease. Can J Neurol Sci 1984;11:169–73.PubMedGoogle Scholar
  38. 38.
    Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain 2007;130:1834–46. 10.1093/brain/awm086 awm086 [pii].PubMedCrossRefGoogle Scholar
  39. 39.
    Brooks DJ, Playford ED, Ibanez V, Sawle GV, Thompson PD, Findley LJ, et al. Isolated tremor and disruption of the nigrostriatal dopaminergic system: an 18F-dopa PET study. Neurology 1992;42:1554–60.PubMedGoogle Scholar
  40. 40.
    Peppard RF, Martin WR, Carr GD, Grochowski E, Schulzer M, Guttman M, et al. Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch Neurol 1992;49:1262–8.PubMedGoogle Scholar
  41. 41.
    Eidelberg D, Moeller JR, Dhawan V, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic anatomy of Parkinson’s disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord 1990;5:203–13. 10.1002/mds.870050304.PubMedCrossRefGoogle Scholar
  42. 42.
    Schreckenberger M, Hägele S, Siessmeier T, Buchholz HG, Armbrust-Henrich H, Rösch F, et al. The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging 2004;31:1128–35. 10.1007/s00259-004-1465-5.PubMedCrossRefGoogle Scholar
  43. 43.
    Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990;4:2737–44.PubMedGoogle Scholar
  44. 44.
    Rinne JO, Laihinen A, Någren K, Bergman J, Solin O, Haaparanta M, et al. PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson’s disease. J Neurosci Res 1990;27:494–9. 10.1002/jnr.490270409.PubMedCrossRefGoogle Scholar
  45. 45.
    Shinotoh H, Calne DB. The use of PET in Parkinson’s disease. Brain Cogn 1995;28:297–310. 10.1006/brcg.1995.1259 S0278-2626(85)71259-6 [pii].PubMedCrossRefGoogle Scholar
  46. 46.
    Cropley VL, Fujita M, Bara-Jimenez W, Brown AK, Zhang XY, Sangare J, et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res 2008;163:171–82. 10.1016/j.pscychresns.2007.11.003 S0925-4927(07)00230-2 [pii].PubMedCrossRefGoogle Scholar
  47. 47.
    Arahata Y, Kato T, Ito K. Molecular imaging in Parkinson’s disease. Nippon Rinsho 2007;65:327–31. Japanese.PubMedGoogle Scholar
  48. 48.
    Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006;67:1612–7. 10.1212/01.wnl.0000242888.30755.5d 67/9/1612 [pii].PubMedCrossRefGoogle Scholar
  49. 49.
    Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 1994;44:1325–9.PubMedGoogle Scholar
  50. 50.
    Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord 1997;12:33–8. 10.1002/mds.870120107.PubMedCrossRefGoogle Scholar
  51. 51.
    Antonini A, Vontobel P, Psylla M, Günther I, Maguire PR, Missimer J, et al. Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 1995;52:1183–90.PubMedGoogle Scholar
  52. 52.
    Seneca N, Finnema SJ, Farde L, Gulyás B, Wikström HV, Halldin C, et al. Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radioligand [11C]MNPA and antagonist [11C]raclopride. Synapse 2006;59:260–9. 10.1002/syn.20238.PubMedCrossRefGoogle Scholar
  53. 53.
    Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 2008;4:743–57.PubMedGoogle Scholar
  54. 54.
    Goldstein DS, Sewell L. Olfactory dysfunction in pure autonomic failure: implications for the pathogenesis of Lewy body diseases. Parkinsonism Relat Disord 2009;15:516–20. 10.1016/j.parkreldis.2008.12.009 S1353-8020(09)00004-2 [pii].PubMedCrossRefGoogle Scholar
  55. 55.
    Kramer ML, Schulz-Schaeffer WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 2007;27:1405–10. 10.1523/JNEUROSCI.4564-06.2007 27/6/1405 [pii].PubMedCrossRefGoogle Scholar
  56. 56.
    Ilgin N, Zubieta J, Reich SG, Dannals RF, Ravert HT, Frost JJ. PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 1999;52:1221–6.PubMedGoogle Scholar
  57. 57.
    Puñal-Rioboo J, Serena-Puig A, Varela-Lema L, Alvarez-Páez AM, Ruano-Ravina A. Clinical utility of (18)F-DOPA-PET in movement disorders. A systematic review. Rev Esp Med Nucl 2009;28:106–13. Spanish. 13137970 [pii].PubMedCrossRefGoogle Scholar
  58. 58.
    Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 1997;120(Pt 12):2187–95.PubMedCrossRefGoogle Scholar
  59. 59.
    Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 1994;57:278–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ. Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease. Eur J Neurol 2008;15:1043–9. 10.1111/j.1468-1331.2008.02235.x ENE2235 [pii].PubMedCrossRefGoogle Scholar
  61. 61.
    Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ. Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord 2007;22:2352–8. 10.1002/mds.21714.PubMedCrossRefGoogle Scholar
  62. 62.
    Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21. 10.1016/j.neuroimage.2005.03.012 S1053-8119(05)00152-7 [pii].PubMedCrossRefGoogle Scholar
  63. 63.
    Juh R, Pae CU, Lee CU, Yang D, Chung Y, Suh T, et al. Voxel based comparison of glucose metabolism in the differential diagnosis of the multiple system atrophy using statistical parametric mapping. Neurosci Res 2005;52:211–9. 10.1016/j.neures.2005.03.010 S0168-0102(05)00090-8 [pii].PubMedCrossRefGoogle Scholar
  64. 64.
    Liepelt I, Reimold M, Maetzler W, Godau J, Reischl G, Gaenslen A, et al. Cortical hypometabolism assessed by a metabolic ratio in Parkinson’s disease primarily reflects cognitive deterioration-[(18)F]FDG-PET. Mov Disord 2009;24:1504–11. 10.1002/mds.22662.PubMedCrossRefGoogle Scholar
  65. 65.
    Eckert T, Tang C, Ma Y, Brown N, Lin T, Frucht S, et al. Abnormal metabolic networks in atypical parkinsonism. Mov Disord 2008;23:727–33. 10.1002/mds.21933.PubMedCrossRefGoogle Scholar
  66. 66.
    Lyoo CH, Jeong Y, Ryu YH, Lee SY, Song TJ, Lee JH, et al. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain 2008;131:438–46. 10.1093/brain/awm328 awm328 [pii].PubMedCrossRefGoogle Scholar
  67. 67.
    Feng T, Wang Y, Ouyang Q, Duan Z, Li W, Lu L, et al. Comparison of cerebral glucose metabolism between multiple system atrophy Parkinsonian type and Parkinson’s disease. Neurol Res 2008;30:377–82. 10.1179/174313208X300396.PubMedCrossRefGoogle Scholar
  68. 68.
    Eidelberg D, Dhawan V, Moeller JR, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography. J Neurol Neurosurg Psychiatry 1991;54:856–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Yong SW, Yoon JK, An YS, Lee PH. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 2007;14:1357–62. 10.1111/j.1468-1331.2007.01977.x ENE1977 [pii].PubMedCrossRefGoogle Scholar
  70. 70.
    Lee PH, Yong SW, An YS. Changes in cerebral glucose metabolism in patients with Parkinson disease with dementia after cholinesterase inhibitor therapy. J Nucl Med 2008;49:2006–11. 10.2967/jnumed.108.054668 jnumed.108.054668 [pii].PubMedCrossRefGoogle Scholar
  71. 71.
    Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 2009;73:273–8. 10.1212/WNL.0b013e3181ab2b58 WNL.0b013e3181ab2b58 [pii].PubMedCrossRefGoogle Scholar
  72. 72.
    Haslinger B, Kalteis K, Boecker H, Alesch F, Ceballos-Baumann AO. Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson’s disease. Neuroimage 2005;28:598–606. 10.1016/j.neuroimage.2005.06.034 S1053-8119(05)00459-3 [pii].PubMedCrossRefGoogle Scholar
  73. 73.
    Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 2006;31:301–7. 10.1016/j.neuroimage.2005.12.024 S1053-8119(05)02538-3 [pii].PubMedCrossRefGoogle Scholar
  74. 74.
    Pourfar M, Tang C, Lin T, Dhawan V, Kaplitt MG, Eidelberg D. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. J Neurosurg 2009;110:1278–82. 10.3171/2008.12.JNS08991.PubMedCrossRefGoogle Scholar
  75. 75.
    Hilker R, Voges J, Weber T, Kracht LW, Roggendorf J, Baudrexel S, et al. STN-DBS activates the target area in Parkinson disease: an FDG-PET study. Neurology 2008;71:708–13. 10.1212/01.wnl.0000312380.01852.77 [pii].PubMedCrossRefGoogle Scholar
  76. 76.
    Arai N, Yokochi F, Ohnishi T, Momose T, Okiyama R, Taniguchi M, et al. Mechanisms of unilateral STN-DBS in patients with Parkinson’s disease: a PET study. J Neurol 2008;255:1236–43. 10.1007/s00415-008-0906-7.PubMedCrossRefGoogle Scholar
  77. 77.
    Li D, Zuo C, Guan Y, Zhao Y, Shen J, Zan S, et al. FDG-PET study of the bilateral subthalamic nucleus stimulation effects on the regional cerebral metabolism in advanced Parkinson disease. Acta Neurochir Suppl 2006;99:51–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Le Jeune F, Péron J, Biseul I, Fournier S, Sauleau P, Drapier S, et al. Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a PET study. Brain 2008;131:1599–608. 10.1093/brain/awn084 awn084 [pii].PubMedCrossRefGoogle Scholar
  79. 79.
    Nimura T, Yamaguchi K, Ando T, Shibuya S, Oikawa T, Nakagawa A, et al. Attenuation of fluctuating striatal synaptic dopamine levels in patients with Parkinson disease in response to subthalamic nucleus stimulation: a positron emission tomography study. J Neurosurg 2005;103:968–73.PubMedCrossRefGoogle Scholar
  80. 80.
    Hilker R, Portman AT, Voges J, Staal MJ, Burghaus L, van Laar T, et al. Disease progression continues in patients with advanced Parkinson’s disease and effective subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry 2005;76:1217–21. 10.1136/jnnp.2004.057893 76/9/1217 [pii].PubMedCrossRefGoogle Scholar
  81. 81.
    Guttman M, Burns RS, Martin WR, Peppard RF, Adam MJ, Ruth TJ, et al. PET studies of parkinsonian patients treated with autologous adrenal implants. Can J Neurol Sci 1989;16:305–9.PubMedGoogle Scholar
  82. 82.
    Brundin P, Björklund A. Survival of expanded dopaminergic precursors is critical for clinical trials. Nat Neurosci 1998;1:537. 10.1038/2773.PubMedCrossRefGoogle Scholar
  83. 83.
    Brundin P, Dunnett S, Björklund A, Nikkhah G. Transplanted dopaminergic neurons: more or less? Nat Med 2001;7:512–3. 10.1038/87796. 87796 [pii].PubMedCrossRefGoogle Scholar
  84. 84.
    Brundin P, Karlsson J, Emgård M, Schierle GS, Hansson O, Petersén A, et al. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000;9:179–95.PubMedGoogle Scholar
  85. 85.
    Freed CR, Breeze RE, Schneck SA. Transplantation of fetal mesencephalic tissue in Parkinson’s disease. N Engl J Med 1995;333:730–1.PubMedCrossRefGoogle Scholar
  86. 86.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344:710–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Freed CR, Leehey MA, Zawada M, Bjugstad K, Thompson L, Breeze RE. Do patients with Parkinson’s disease benefit from embryonic dopamine cell transplantation? J Neurol 2003;250 Suppl 3:III44–6. 10.1007/s00415-003-1308-5.PubMedGoogle Scholar
  88. 88.
    Freeman TB, Olanow CW, Hauser RA, Nauert GM, Smith DA, Borlongan CV, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 1995;38:379–88. 10.1002/ana.410380307.PubMedCrossRefGoogle Scholar
  89. 89.
    Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001;60:741–52.PubMedGoogle Scholar
  90. 90.
    Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 1999;122(Pt 6):1121–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Lindvall O. Neural transplantation. Cell Transplant 1995;4:393–400. 096368979500022P [pii].PubMedCrossRefGoogle Scholar
  92. 92.
    Lindvall O. Neural transplantation: a hope for patients with Parkinson’s disease. Neuroreport 1997;8:iii–x.PubMedCrossRefGoogle Scholar
  93. 93.
    Lindvall O. Update on fetal transplantation: the Swedish experience. Mov Disord 1998;13 Suppl 1:83–7.PubMedGoogle Scholar
  94. 94.
    Remy P, Samson Y, Hantraye P, Fontaine A, Defer G, Mangin JF, et al. Clinical correlates of [18F]fluorodopa uptake in five grafted parkinsonian patients. Ann Neurol 1995;38:580–8. 10.1002/ana.410380406.PubMedCrossRefGoogle Scholar
  95. 95.
    Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997;42:95–107. 10.1002/ana.410420115.PubMedCrossRefGoogle Scholar
  96. 96.
    Piccini P, Pavese N, Hagell P, Reimer J, Björklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 2005;128:2977–86. 10.1093/brain/awh649 awh649 [pii].PubMedCrossRefGoogle Scholar
  97. 97.
    Leriche L, Björklund T, Breysse N, Besret L, Grégoire MC, Carlsson T, et al. Positron emission tomography imaging demonstrates correlation between behavioral recovery and correction of dopamine neurotransmission after gene therapy. J Neurosci 2009;29:1544–53. 10.1523/JNEUROSCI.4491-08.2009 29/5/1544 [pii].PubMedCrossRefGoogle Scholar
  98. 98.
    Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, et al. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 2006;14:571–7. 10.1016/j.ymthe.2006.04.008 S1525-0016(06)00176-6 [pii].PubMedCrossRefGoogle Scholar
  99. 99.
    Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008;70:1980–3. 10.1212/01.wnl.0000312381.29287.ff [pii].PubMedCrossRefGoogle Scholar
  100. 100.
    Cunningham J, Pivirotto P, Bringas J, Suzuki B, Vijay S, Sanftner L, et al. Biodistribution of adeno-associated virus type-2 in nonhuman primates after convection-enhanced delivery to brain. Mol Ther 2008;16:1267–75. 10.1038/mt.2008.111 mt2008111 [pii].PubMedCrossRefGoogle Scholar
  101. 101.
    Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 2007;27:501–9. 10.1038/sj.jcbfm.9600364 9600364 [pii].PubMedCrossRefGoogle Scholar
  102. 102.
    Feigin A, Kaplitt MG, Tang C, Lin T, Mattis P, Dhawan V, et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc Natl Acad Sci U S A 2007;104:19559–64. 10.1073/pnas.0706006104 0706006104 [pii].PubMedCrossRefGoogle Scholar
  103. 103.
    Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007;369:2097–105. 10.1016/S0140-6736(07)60982-9 S0140-6736(07)60982-9 [pii].PubMedCrossRefGoogle Scholar
  104. 104.
    Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 2008;7:400–8. 10.1016/S1474-4422(08)70065-6 S1474-4422(08)70065-6 [pii].PubMedCrossRefGoogle Scholar
  105. 105.
    Jackson J, Chapon C, Jones W, Hirani E, Qassim A, Bhakoo K. In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson’s disease. J Neurosci Methods 2009;183:141–8. 10.1016/j.jneumeth.2009.06.022 S0165-0270(09)00327-6 [pii].PubMedCrossRefGoogle Scholar
  106. 106.
    Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, et al. Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse 2009;63:541–8. 10.1002/syn.20634.PubMedCrossRefGoogle Scholar
  107. 107.
    Tipre DN, Goldstein DS. Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med 2005;46:1775–81. 46/11/1775 [pii].PubMedGoogle Scholar
  108. 108.
    Litvan I, Cummings JL, Mega M. Neuropsychiatric features of corticobasal degeneration. J Neurol Neurosurg Psychiatry 1998;65:717–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Chrissa Sioka
    • 1
    • 4
  • Andreas Fotopoulos
    • 1
  • Athanassios P. Kyritsis
    • 2
    • 3
  1. 1.Department of Nuclear MedicineUniversity Hospital of IoanninaIoanninaGreece
  2. 2.Department of NeurologyUniversity Hospital of IoanninaIoanninaGreece
  3. 3.Neurosurgical Research InstituteUniversity of IoanninaIoanninaGreece
  4. 4.Department of Nuclear MedicineUniversity of Ioannina School of Medicine, University CampusIoanninaGreece

Personalised recommendations