Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer

  • Walter JentzenEmail author
  • Robert F. Hobbs
  • Alexander Stahl
  • Jochen Knust
  • George Sgouros
  • Andreas Bockisch
Original Article



Salivary gland impairment following high activity radioiodine therapy of differentiated thyroid cancer (DTC) is a severe side effect. Dosimetric calculations using planar gamma camera scintigraphy (GCS) with 131I and ultrasonography (US) provided evidence that the average organ dose per administered 131I activity (ODpA) is too low to account for observed radiation damages to the salivary glands. The objective of this work was to re-estimate the ODpA using 124I PET(/CT) as a more reliable approach than 131I GCS/US.


Ten DTC patients underwent a series of six (or seven) PET scans and one PET/CT scan after administration of ∼23 MBq 124I-iodide. Volumes of interest (VOIs) drawn on the CT and serial PET images were used to determine the glandular volumes and the imaged 124I activities. To enable identical VOIs to be drawn on serial PET images, each PET was co-registered with the CT image. To correct for partial volume effect and for the artificial bias in the activity concentration due to cascading gamma coincidences occurring in 124I decay, the imaged activity was effectively corrected using isovolume recovery coefficients (RCs) based on recovery phantom measurements. A head-neck phantom, which contained 124I-filled spheres, was manufactured to validate the isovolume recovery correction method with a realistic patient-based phantom geometry and for a range of activity concentration regimes. The mean±standard deviation (range) ODpA projected for 131I was calculated using the absorbed dose fraction method.


The ODpAs (in Gy/GBq) for the submandibular and parotid glands were 0.32 ± 0.13 (0.18–0.55) and 0.31 ± 0.10 (0.13–0.46), respectively. No significant differences (p> 0.2) in the mean ODpA between 124I PET(/CT) and 131I GCS/US dosimetry was found. The validation experiment showed that the percentage deviations between RC-corrected and true activity concentrations were <10%.


124I PET(/CT) dosimetry also corroborates the low ODpAs to the salivary glands. A voxel-based calculation taking into account the nonuniform activity distributions in the glands is necessary to possibly explain the radiation-induced salivary gland damage.


Radioiodine therapy Differentiated thyroid cancer Salivary gland 124Dosimetry 


  1. 1.
    Hyer S, Kong A, Pratt B, Harmer C. Salivary gland toxicity after radioiodine therapy for thyroid cancer. Clin Oncol 2007;19:83–6.CrossRefGoogle Scholar
  2. 2.
    Bohuslavizki KH, Brenner W, Lassmann S, Tinnemeyer S, Tönshoff G, Sippel C, et al. Quantitative salivary gland scintigraphy in the diagnosis of parenchymal damage after treatment with radioiodine. Nucl Med Commun 1996;17:681–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Bohuslavizki KH, Brenner W, Lassmann S, Tinnemeyer S, Kalina S, Clausen M, et al. Quantitative salivary gland scintigraphy—a recommended examination prior to and after radioiodine therapy (in German). Nuklearmedizin 1997;36:103–9.PubMedGoogle Scholar
  4. 4.
    Jentzen W, Schneider E, Freudenberg L, Eising EG, Görges R, Müller SP, et al. Relationship between cumulative radiation dose and salivary gland uptake associated with radioiodine therapy of thyroid cancer. Nucl Med Commun 2006;27:669–76.CrossRefPubMedGoogle Scholar
  5. 5.
    Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006;16:47–9.PubMedGoogle Scholar
  6. 6.
    Kolbert KS, Pentlow KS, Pearson JR, Sheikh A, Finn RD, Humm JL, et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med 2007;48:143–49.PubMedGoogle Scholar
  7. 7.
    Freudenberg L, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 2007;46:121–28.PubMedGoogle Scholar
  8. 8.
    Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008;49:1017–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Lubberink M, Abdul Fatah S, Brans B, Hoekstra OS, Teule GJJ. The role of 124I-PET in diagnosis and treatment of thyroid carcinoma. Q J Nucl Med Mol Imaging 2008;52:30–6.PubMedGoogle Scholar
  10. 10.
    Hobbs RF, Wahl RL, Lodge MA, Javadi MS, Cho SY, Chien DT, et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 2009;50:1844–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Chu SYF, Ekström LP, Firestone RB. 1999. The Lund/LBNL nuclear data search. Database version 2.0
  12. 12.
    Jentzen W, Weise R, Kupferschläger J, Freudenberg LS, Brandau W, Bares R, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 2008;35:611–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 2000;27:161–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Jentzen W. Pre-therapeutic 124I PET(/CT) salivary gland dosimetry in the radioiodine therapy of differentiated thyroid carcinoma and investigation of important factors affecting the 124I quantification. Dissertation 2010, University of Duisburg-Essen, Germany.Google Scholar
  15. 15.
    Junker D, Fitschen J. Dosimetrie inkorporierter Strahlen. In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zuppinger A, editors. Handbuch der medizinischen Radiologie/Encyclopedia of medical radiology. Band/Volume 15, Teil/Part 1A. Berlin: Springer; 1980. p. 425–82.Google Scholar
  16. 16.
    Ferrari P, Gualdrini G. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies. Phys Med Biol 2005;50:4299–316.CrossRefPubMedGoogle Scholar
  17. 17.
    Focht EF, Quimby EH, Gershowitz M. Revised average geometric factors for cylinders in isotope dosage. Radiology 1965;85:151–2.PubMedGoogle Scholar
  18. 18.
    Brown-Grant K. Extrathyroidal iodide concentrating mechanisms. Physiol Rev 1961;41:189–213.Google Scholar
  19. 19.
    Junqueira LC, Carneiro J. Histologie. 3rd ed. Berlin: Springer; 1991.Google Scholar
  20. 20.
    Jhiang SM, Cho JY, Ryu KY, DeYoung BR, Smanik PA, McGaughy VR, et al. An immunohistochemical study of Na+/I symporter in human thyroid tissues and salivary gland tissues. Endocrinology 1998;139:4416–19.CrossRefPubMedGoogle Scholar
  21. 21.
    Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45:1366–72.PubMedGoogle Scholar
  22. 22.
    Nakada K, Ishibashi T, Takei T, Hirata K, Shinohara K, Katoh S, et al. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med 2005;46:261–66.PubMedGoogle Scholar
  23. 23.
    Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Walter Jentzen
    • 1
    Email author
  • Robert F. Hobbs
    • 2
  • Alexander Stahl
    • 1
  • Jochen Knust
    • 1
  • George Sgouros
    • 2
  • Andreas Bockisch
    • 1
  1. 1.Klinik für NuklearmedizinUniversität Duisburg-EssenEssenGermany
  2. 2.Department of Radiology, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations