Detection of hypoxia in microscopic tumors using 131I-labeled iodo-azomycin galactopyranoside (131I-IAZGP) digital autoradiography

  • Xiao-Feng Li
  • Xiaorong Sun
  • Yuanyuan Ma
  • Makiko Suehiro
  • Mutian Zhang
  • James Russell
  • John L. Humm
  • C. Clifton Ling
  • Joseph A. O’Donoghue
Original Article



Previous studies have shown that tumors less than 1 mm diameter derived from HT29 colorectal cancer cells are extremely hypoxic when grown intraperitoneally or intradermally in nude mice, whereas those of greater size (approximately 1–4 mm diameter) are not significantly hypoxic. The object of this study was to determine if digital autoradiography using the radiolabeled hypoxia imaging tracer iodo-azomycin galactopyranoside (131I-IAZGP) could detect hypoxia in this model.


Microscopic HT29 tumors were grown as disseminated peritoneal disease and intradermally in nude mice. Tumors ranged in size from a few hundred microns to several millimeters in diameter. Animals were intravenously administered 131I-IAZGP and pimonidazole 2 h before sacrifice. Following sacrifice, the intratumoral distribution of 131I-IAZGP was assessed by digital autoradiography and compared with immunofluorescence microscopic images of pimonidazole binding and carbonic anhydrase IX (CAIX) expression.


The distributions of 131I-IAZGP, pimonidazole, and CAIX expression were similar. Tumors less than 1 mm diameter displayed high 131I-IAZGP uptake; these tumors also stained strongly for pimonidazole and CAIX. Larger tumors (approximately 1–4 mm diameter) were not significantly hypoxic and had low 131I-IAZGP accumulation.


131I-IAZGP can detect hypoxia in microscopic tumors. Microscopic tumors are useful models for the validation of hypoxia radiotracers, and digital autoradiography is an appropriate technique for studying the distribution of hypoxia radiotracers in microscopic tumors.


Micrometastasis Tumor hypoxia Iodo-azomycin galactopyranoside Hypoxia radiotracer Autoradiography 



Grant support: National Institute of Health grants R01 CA84596 and P01 CA115675, National Cancer Institute grant P30-CA 08748.

Conflicts of interest



  1. 1.
    Li XF, Carlin S, Urano M, Russell J, Ling CC, O’Donoghue JA. Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res 2007;67:7646–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Li XF, O’Donoghue JA. Hypoxia in microscopic tumors. Cancer Lett 2008;264:172–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Bentzen L, Keiding S, Horsman MR, Falborg L, Hansen SB, Overgaard J. Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography—a study evaluating [18F]fluoro-2-deoxy-D-glucose. Acta Oncol 2000;39:629–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Dubois L, Landuyt W, Haustermans K, Dupont P, Bormans G, Vermaelen P, et al. Evaluation of hypoxia in an experimental rat tumour model by [(18)F]fluoromisonidazole PET and immunohistochemistry. Br J Cancer 2004;91:1947–54.CrossRefPubMedGoogle Scholar
  5. 5.
    He F, Deng X, Wen B, Liu Y, Sun X, Xing L, et al. Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 2008;68:8597–606.CrossRefPubMedGoogle Scholar
  6. 6.
    Vāvere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 2007;43:4893–902.CrossRefPubMedGoogle Scholar
  7. 7.
    Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KS, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 2006;82:699–757.CrossRefPubMedGoogle Scholar
  8. 8.
    O’Donoghue JA, Zanzonico P, Pugachev A, Wen B, Smith-Jones P, Cai S, et al. Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 2005;61:1493–502.PubMedGoogle Scholar
  9. 9.
    Iyer RV, Engelhardt EL, Stobbe CC, Schneider RF, Chapman JD. Preclinical assessment of hypoxic marker specificity and sensitivity. Int J Radiat Oncol Biol Phys 1998;42:741–5.PubMedGoogle Scholar
  10. 10.
    Zanzonico P, O’Donoghue J, Chapman JD, Schneider R, Cai S, Larson S, et al. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging 2004;31:117–28.CrossRefPubMedGoogle Scholar
  11. 11.
    Riedl CC, Brader P, Zanzonico PB, Chun YS, Woo Y, Singh P, et al. Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET. Radiology 2008;248:561–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 2007;167:127–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Sun X, Li XF, Russell J, Xing L, Urano M, Li GC, et al. Changes in tumor hypoxia induced by mild temperature hyperthermia as assessed by dual-tracer immunohistochemistry. Radiother Oncol 2008;88:269–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaanders JH, Wijffels KI, Marres HA, Ljungkvist AS, Pop LA, van den Hoogen FJ, et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res 2002;62:7066–74.PubMedGoogle Scholar
  15. 15.
    Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler WC Jr, et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 1998;58:3765–8.PubMedGoogle Scholar
  16. 16.
    Raleigh JA, Chou SC, Arteel GE, Horsman MR. Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 1999;151:580–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Ljungkvist AS, Bussink J, Rijken PF, Raleigh JA, Denekamp J, Van Der Kogel AJ. Changes in tumor hypoxia measured with a double hypoxic marker technique. Int J Radiat Oncol Biol Phys 2000;48:1529–38.PubMedGoogle Scholar
  18. 18.
    Driessen A, Landuyt W, Pastorekova S, Moons J, Goethals L, Haustermans K, et al. Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg 2006;243:334–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Hoskin PJ, Sibtain A, Daley FM, Wilson GD. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Br J Cancer 2003;89:1290–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Potter CP, Harris AL. Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer. Br J Cancer 2003;89:2–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos K, Pastorek J, Wykoff CC, et al. Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clin Cancer Res 2001;7:3399–403.PubMedGoogle Scholar
  22. 22.
    Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Sobhanifar S, Aquino-Parsons C, Stanbridge EJ, Olive P. Reduced expression of hypoxia-inducible factor-1alpha in perinecrotic regions of solid tumors. Cancer Res 2005;65:7259–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Troost EG, Bussink J, Kaanders JH, van Eerd J, Peters JP, Rijken PF, et al. Comparison of different methods of CAIX quantification in relation to hypoxia in three human head and neck tumor lines. Radiother Oncol 2005;76:194–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Shin KH, Diaz-Gonzalez JA, Russell J, Chen Q, Burgman P, Li XF, et al. Detecting changes in tumor hypoxia with carbonic anhydrase IX and pimonidazole. Cancer Biol Ther 2007;6:70–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys 2005;62:545–53.PubMedGoogle Scholar
  27. 27.
    Schneider RF, Engelhardt EL, Stobbe CC, Fenning MC, Chapman JD. The synthesis and radiolabelling of novel markers of tissue hypoxia of the iodinated azomycin nucleoside class. J Labelled Compd Radiopharm 1997;39:541–57.CrossRefGoogle Scholar
  28. 28.
    Suehiro M, Burgman P, Carlin S, Burke S, Yang GB, Ouerfelli O, et al. Radiosynthesis of [(131)I]IAZGP via nucleophilic substitution and its biological evaluation as a hypoxia marker—is specific activity a factor influencing hypoxia-mapping ability of a hypoxia marker? Nucl Med Biol 2009;36:477–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004;4:437–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Melillo G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 2007;26:341–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Denny WA, Wilson WR. Tirapazamine: a bioreductive anticancer drug that exploits tumour hypoxia. Expert Opin Investig Drugs 2000;9:2889–901.CrossRefPubMedGoogle Scholar
  32. 32.
    von Pawel J, von Roemeling R, Gatzemeier U, Boyer M, Elisson LO, Clark P, et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and tirapazamine in subjects with advanced previously untreated non-small-cell lung tumors. J Clin Oncol 2000;18:1351–9.Google Scholar
  33. 33.
    Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006;24:2098–104.CrossRefPubMedGoogle Scholar
  34. 34.
    Reddy SB, Williamson SK. Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs 2009;18:77–87.CrossRefPubMedGoogle Scholar
  35. 35.
    Lalani AS, Alters SE, Wong A, Albertella MR, Cleland JL, Henner WD. Selective tumor targeting by the hypoxia-activated prodrug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic cancer. Clin Cancer Res 2007;13:2216–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Patterson AV, Ferry DM, Edmunds SJ, Gu YC, Singleton RS, Patel K, et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res 2007;13:3922–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Duan JX, Jiao H, Kaizerman J, Stanton T, Evans JW, Lan L, et al. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J Med Chem 2008;51:2412–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. Lancet Oncol 2003;4:548–56.CrossRefPubMedGoogle Scholar
  39. 39.
    Wei MQ, Mengesha A, Good D, Anné J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 2008;259:16–27.CrossRefPubMedGoogle Scholar
  40. 40.
    Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted {alpha}-particle therapy. J Nucl Med 2005;46(Suppl 1):199S–204S.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xiao-Feng Li
    • 1
    • 2
    • 3
    • 6
  • Xiaorong Sun
    • 1
    • 4
  • Yuanyuan Ma
    • 5
  • Makiko Suehiro
    • 1
  • Mutian Zhang
    • 1
  • James Russell
    • 1
  • John L. Humm
    • 1
  • C. Clifton Ling
    • 1
  • Joseph A. O’Donoghue
    • 1
  1. 1.Department of Medical PhysicsMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Imaging CenterThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  3. 3.Department of Nuclear MedicineThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  4. 4.Department of Nuclear Medicine, PET-CT CenterShandong Cancer Hospital and InstituteJinanPeople’s Republic of China
  5. 5.Department of PathologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  6. 6.Department of Diagnostic RadiologyUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations