Radiopharmaceuticals for positron emission tomography investigations of Alzheimer’s disease

  • Kjell NågrenEmail author
  • Christer Halldin
  • Juha O. Rinne
Review Article


Alzheimer’s disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long “asymptomatic” phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various 18F- and 11C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects.


AD Alzheimer’s disease Cognition Positron emission tomography PET 1118


  1. 1.
    Hebert LE, Scherr PA, Bienias JL, Bennet DA, Evans DA. Alzheimer disease in the US population. Prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–22.PubMedGoogle Scholar
  2. 2.
    Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health. 1998;88:1337–42.PubMedGoogle Scholar
  3. 3.
    Alzheimer A. Über eine eigenartige Erkrangung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie. 1907;64:146–8.Google Scholar
  4. 4.
    Selkoe DJ. Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci. 2000;924:17–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imag. 2005;32:486–510.Google Scholar
  6. 6.
    Någren K, Rinne JO. Application of 18F-PET imaging for the study of Alzheimer’s disease. In: Tressaud A, Haufe G, editors. Fluorine and health—molecular imaging, biomedical materials and pharmaceuticals. Amsterdam: Elsevier BV; 2008. p. 67–84.Google Scholar
  7. 7.
    Halldin C, Gulyás B, Langer O, Farde L. Brain radioligands: state of the art and new trends. Q J Nucl Med. 2001;45:139–52.PubMedGoogle Scholar
  8. 8.
    Verbruggen A, Coenen HH, Deverre J-R, Guilloteau D, Langstrom B, Salvadori PA, et al. Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imag. 2008;35:2144–51.Google Scholar
  9. 9.
    Larsen P, Ulin J, Dahlström K, Jensen M. Synthesis of [11C]methyl iodide by iodination of [11C]methane. Appl Radiat Isot. 1997;48:153–7.Google Scholar
  10. 10.
    Någren K, Truong P, Helin S, Amir A, Halldin C. Experience from two systems for recirculating production of [11C]methyl iodide from target produced [11C]methane. J Labelled Compds Radiopharm. 2003;46(Suppl. 1):S76.Google Scholar
  11. 11.
    Andersson J, Truong P, Halldin C. In-target produced [11C]methane: increased specific radioactivity. Appl Radiat Isot. 2009;67:106–10.PubMedGoogle Scholar
  12. 12.
    Bergström M, Grahnén A, Långström B. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol. 2003;59:357–66.PubMedGoogle Scholar
  13. 13.
    Guideline on Radiopharmaceuticals, EMEA/CHMP/QWP/306970/2007
  14. 14.
    Small GW, Mazziotta JC, Collins MT, Baxter LR, Phelps ME, Mandelkern MA, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer's disease. J Am Med Assoc. 1995;273:942–7.Google Scholar
  15. 15.
    Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci. 2004;101:284–9.PubMedGoogle Scholar
  16. 16.
    Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET. J Nucl Med. 2005;46:1625–32.PubMedGoogle Scholar
  17. 17.
    Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imag. 2003;30:1104–13.Google Scholar
  18. 18.
    Järvenpää T, Raiha I, Kaprio J, Koskenvuo M, Laine M, Kurki T, et al. Regional cerebral glucose metabolism in monozygotic twins discordant for Alzheimer’s disease. Dement Geriatr Cogn Disord. 2003;16:245–52.PubMedGoogle Scholar
  19. 19.
    Devous MD Sr. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med. 2002;29:1685–96.Google Scholar
  20. 20.
    Dougall N. J, Bruggink S, Ebmeier KP. Systematic review of the diagnostic accuracy of 99mTc-HMPAO SPECT in dementia. Am J Geriatr Psychiatry. 2004;12:554–70.PubMedGoogle Scholar
  21. 21.
    Ishii K, Minoshima S, Pupi A, Nobili FM. PET is better than perfusion SPECT for early diagnosis of Alzheimer’s disease. For – Against. Eur J Nucl Med Mol Imag. 2005;32:1463–72.Google Scholar
  22. 22.
    Salmon E, Gregoire MC, Delfiore G, Lemaire C, Degueldre C, Franck G, et al. Combined study of cerebral glucose metabolism and [11C]methionine accumulation in probable Alzheimer’s disease using positron emission tomography. J Cereb Blood Flow Metab. 1996;16:399–408.PubMedGoogle Scholar
  23. 23.
    Farlow MR, Evans RM. Pharmacologic treatment of cognition in Alzheimer’s dementia. Neurology. 1998;51(Suppl 1):S36–44.PubMedGoogle Scholar
  24. 24.
    Braak H, de Vos RAI, Jansen ENH, Bratzke H, Braak E. Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog Brain Res. 1998;117:267–85.PubMedGoogle Scholar
  25. 25.
    Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of the Alzheimer type. Neuropathol Appl Neurobiol. 1978;4:273–7.PubMedGoogle Scholar
  26. 26.
    Reisine TD, Yamamura HI, Bird ED, Spokes E, Enna SJ. Presynaptic and postsynaptic neurochemical alterations in Alzheimer’s disease. Brain Res. 1978;159:477–80.PubMedGoogle Scholar
  27. 27.
    Rinne JO, Rinne JK, Laakso K, Paljärvi L, Rinne UK. Reduction in muscarinic receptor binding in limbic areas of Alzheimer brain. J Neurol Neurosurg Psychiatry. 1984;47:651–2.PubMedGoogle Scholar
  28. 28.
    Perry EK, Smith CJ, Court JA, Perry RH. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J Neural Transm Park Dis Dement Sect. 1990;2:149–58.PubMedGoogle Scholar
  29. 29.
    Rinne JO, Myllykylä T, Lönnberg P, Marjamäki P. A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res. 1991;547:167–70.PubMedGoogle Scholar
  30. 30.
    Oddo S, LaFerla FM. The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiology – Paris. 2006;99:172–9.Google Scholar
  31. 31.
    Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm [P-D Sect]. 1990;2:215–24.Google Scholar
  32. 32.
    Schmaljohann J, Minnerop M, Karwath P, Gündisch D, Falkai P, Guhlke S, et al. Imaging of central nACh Receptors with 2-[18F]F-A85380: optimized synthesis and in vitro evaluation in Alzheimer’s disease. Appl Radiat Isot. 2004;61:1235–40.PubMedGoogle Scholar
  33. 33.
    Ellis JR, Villemagne VL, Nathan PJ, Mulligan RS, Gong SJ, Chan JG, et al. Relationship between nicotinic receptors and cognitive function in early Alzheimer's disease: a 2-[18F]fluoro-A-85380 PET study. Neurobiol Learn Mem. 2008;90:405–12.Google Scholar
  34. 34.
    Kendziorra K, Meyer P, Wolf H, Hesse S, Barthel H, Seese A, et al. Cerebral nicotinic acetylcholine receptors (nAChRs) in patients with Alzheimer's disease (AD) assessed with 2-[18F]F-A85380 (2FA) PET. Eur J Nucl Med Mol Imag. 2009;36(Suppl 2):S168.Google Scholar
  35. 35.
    Iida Y, Ogawa M, Ueda M, Tominaga A, Kawashima H, Magata Y, et al. Evaluation of 5–11C-methyl-A-85380 as an imaging agent for PET investigations of brain nicotinic acetylcholine receptors. J Nucl Med. 2004;45:878–84.PubMedGoogle Scholar
  36. 36.
    Ding Y-S, Kil K, Lin K-S, Ma W, Yokota Y, Carrol IF. A novel nicotinic acetylcholine receptor antagonist radioligand for PET studies. Bioorg Med Chem Lett. 2006;16:1049–53.PubMedGoogle Scholar
  37. 37.
    Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellström-Lindahl E, et al. Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dem Geriatr Cogn Disord. 1997;8:78–84.Google Scholar
  38. 38.
    Yoshida T, Kuwabara Y, Ichiya Y, Sasaki M, Fukumura T, Ichimiya A, et al. Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med. 1998;12:35–42.PubMedGoogle Scholar
  39. 39.
    Zubieta J-K, Koeppe RA, Frey KA, Kilbourn MR, Mangner TJ, Foster NL, et al. Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse. 2001;39:275–87.PubMedGoogle Scholar
  40. 40.
    Podruchny TA, Connolly C, Bokde A, Herscovitch P, Eckelman WC, Kiesewetter DA, et al. In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse. 2003;48:39–44.PubMedGoogle Scholar
  41. 41.
    Cohen RM, Podruchny TA, Bokde ALW, Carson RE, Herscovitch P, Kiesewetter DA, et al. Higher in vivo muscarinic-2 receptor distribution volumes in ageing subjects with an apolipoprotein E-ε4 allele. Synapse. 2003;49:150–6.PubMedGoogle Scholar
  42. 42.
    Rinne JO, Kaasinen V, Järvenpää T, Någren K, Roivainen A, Yu M, et al. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:113–5.PubMedGoogle Scholar
  43. 43.
    Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology. 1999;52:691–9.PubMedGoogle Scholar
  44. 44.
    Herholz K, Weisenbach S, Kalbe E, Diederich NJ, Heiss W-D. Cerebral acetylcholine esterase activity in mild cognitive impairment. Neuroreport. 2005;16:1431–4.PubMedGoogle Scholar
  45. 45.
    Kuhl DE, Koeppe RA, Snyder SE, Minoshima S, Frey KA, Kilbourn MR. In vivo butyrylcholinesterase activity is not increased in Alzheimer’s disease synapses. Ann Neurol. 2006;59:13–20.PubMedGoogle Scholar
  46. 46.
    Kaasinen V, Någren K, Järvenpää T, Roivainen A, Yu M, Oikonen V, et al. Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacology. 2002;22:615–20.Google Scholar
  47. 47.
    Zhang M-R, Tsuchiyama A, Haradahira T, Furutsuka K, Toshida Y, Kida T, et al. Synthesis and preliminary evaluation of [18F]FEtP4A, a promising PET tracer for mapping acetylcholinesterase in vivo. Nucl Med Biol. 2002;29:463–8.PubMedGoogle Scholar
  48. 48.
    Shao X, Butch ER, Kilbourn MR, Snyder SE. N-[18F]fluoroethylpiperidinyl, N-[18F]fluoroethylpiperidinemethyl and N-[18F]fluoroethylpyrrolidinyl esters as radiotracers for acetylcholinesterase. Nucl Med Biol. 2003;30:491–500.PubMedGoogle Scholar
  49. 49.
    Kikuchi T, Zhang M-R, Ikota N, Fukushi K, Okamura T, Suzuki K, et al. N-[18F]fluoroethylpiperidin-4ylmethyl butyrate: a novel radiotracer for quantifying brain butyrylcholinesterase activity by positron emission tomography. Bioorg Med Chem Lett. 2004;14:1927–30.PubMedGoogle Scholar
  50. 50.
    Okamura N, Funaki Y, Tashiro M, Kato M, Ishikawa Y, Maruyama M, et al. In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. Br J Clin Pharmacol. 2007;65:472–9.PubMedGoogle Scholar
  51. 51.
    Kemppainen N, Ruottinen H, Någren K, Rinne JO. PET shows that striatal dopamine D1 and D2 receptors are differently affected in AD. Neurology. 2000;55:205–9.PubMedGoogle Scholar
  52. 52.
    Farde L, Halldin C, Stone-Elander S, Sedvall G. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology. 1987;92:278–84.PubMedGoogle Scholar
  53. 53.
    Bäckman L, Ginovart N, Dixon RA, Robins Wahlin T-B, Wahlin Å, Halldin C, et al. Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry. 2000;157:635–7.PubMedGoogle Scholar
  54. 54.
    Tanaka Y, Meguro K, Yamaguchi S, Ishii H, Watanuki S, Funaki Y, et al. Decreased striatal D2 receptor density associated with severe behavioural abnormality in Alzheimer’s disease. Ann Nucl Med. 2003;17:567–73.PubMedGoogle Scholar
  55. 55.
    Meguro K, Yamaguchi S, Shimada M, Itoh M, Yamadori A. Striatal dopaminergic transmission and glucose utilization in Alzheimer’s disease: a triple tracer positron emission tomography study. Arch Gerontol Geriatr. 2000;31:147–58.PubMedGoogle Scholar
  56. 56.
    Kemppainen N, Laine M, Laakso MP, Kaasinen V, Någren K, Vahlberg T, et al. Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci. 2003;18:149–54.PubMedGoogle Scholar
  57. 57.
    Mukherjee J, Yang ZY, Brown T, Lew R, Wernick M, Ouyang X, et al. Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol. 1999;26:519–27.PubMedGoogle Scholar
  58. 58.
    Riccardi P, Li R, Ansari MS, Zald D, Park S, Dawant B, et al. Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology. 2006;31:1016–26.PubMedGoogle Scholar
  59. 59.
    Rinne JO, Sahlberg N, Ruottinen H, Någren K, Lehikoinen P. Striatal uptake of the dopamine reuptake ligand [11C]β-CFT is reduced in Alzheimer’s disease assessed by positron emission tomography. Neurology. 1998;50:152–6.PubMedGoogle Scholar
  60. 60.
    Walker Z, Costa DC, Walker RWH, Shaw K, Gacinovic S, Stevens T, et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry. 2002;73:134–40.PubMedGoogle Scholar
  61. 61.
    McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6:305–13.PubMedGoogle Scholar
  62. 62.
    Walker Z, Jaros E, Walker RW, Lee L, Costa DC, Livingston G, et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry. 2007;78:1176–81.PubMedGoogle Scholar
  63. 63.
    McKeith I, Rinne JO. Differential diagnosis with degenerative dementias. In: Erkinjuntti T, Gauthier S, editors. Vascular cognitive impairment. London: Martin Dunitz; 2002. p. 672.Google Scholar
  64. 64.
    Rinne JO, Nurmi E, Ruottinen HM, Bergman J, Haaparanta M, Solin O. 6-[18F]fluoro-l-dopa and [18F]CFT are both sensitive PET markers to detect presynaptic dopaminergic hypofunction in early Parkinson's disease. Synapse. 2001;40:193–200.PubMedGoogle Scholar
  65. 65.
    Rinne JO, Laine M, Kaasinen V, Norvasuo-Heilä M-K, Någren K, Helenius H. Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology. 2002;58:1489–93.PubMedGoogle Scholar
  66. 66.
    Erixon-Lindroth N, Farde L, Robins Wahlin T-B, Sovago J, Halldin C, Bäckman L. The role of the striatal dopamine transporter in cognitive aging. Psychiatry Research: Neuroimaging. 2005;138:1–12.PubMedGoogle Scholar
  67. 67.
    Halldin C, Erixon-Lindroth N, Pauli S, Chou YH, Okubo Y, Karlsson P, et al. [11C]PE2I: a highly selective radioligand for PET examination of the dopamine transporter in monkey and human brain. Eur J Nucl Med Mol Imag. 2003;30:1220–30.Google Scholar
  68. 68.
    Jucaite A, Odano I, Olsson H, Pauli S, Halldin C, Farde L. Quantitative analyses of regional [11C]PE2I binding to the dopamine transporter in the human brain: a PET study. Eur J Nucl Med Mol Imag. 2006;33:657–68.Google Scholar
  69. 69.
    Nurmi E, Bergman J, Eskola O, Solin O, Vahlberg T, Sonninen P, et al. Progression of dopaminergic dysfunction in striatal subregions in Parkinson’s disease using [18F]CFT PET. Synapse. 2003;48:109–15.PubMedGoogle Scholar
  70. 70.
    Carbon M, Ma Y, Barnes A, Dhawan V, Chaly T, Ghilardi MF, et al. Caudate nucleus: influence of dopaminergic input on sequence learning and brain activation in Parkinsonism. Neuroimage. 2004;21:1497–507.PubMedGoogle Scholar
  71. 71.
    Davis MR, Votaw JR, Bremner JD, Byas-Smith MG, Faber TL, Voll RJ, et al. Initial human PET imaging studies with the dopamine transporter ligand 18F-FECNT. J Nucl Med. 2003;44:855–61.PubMedGoogle Scholar
  72. 72.
    Gilman S, Koeppe RA, Little R, An H, Junck L, Giordani B, et al. Striatal monoamine terminals in Lewy body dementia and Alzheimer’s disease. Ann Neurol. 2004;55:774–80.PubMedGoogle Scholar
  73. 73.
    Koeppe RA, Gilman S, Joshi A, Liu S, Little R, Junck L, et al. 11C-DTBZ and 18F-FDG PET measures in differenting dementias. J Nucl Med. 2005;46:936–44.PubMedGoogle Scholar
  74. 74.
    Koeppe RA, Gilman S, Junck L, Wernette K, Frey KA. Differenting Alzheimer’s disease from dementia with Lewy bodies and Parkinson’s disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimer’s & Dementia. 2008;4:S67–76.Google Scholar
  75. 75.
    Goswami R, Ponde DE, Kung MP, Hou C, Kilbourn MR, Kung HF. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol. 2006;33:685–94.PubMedGoogle Scholar
  76. 76.
    Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF. Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol. 2007;34:239–46.PubMedGoogle Scholar
  77. 77.
    Blin J, Baron JC, Dubois B, Crouzel C, Fiorelli M, Attar-Lévy D, et al. Loss of brain 5-HT2 receptors in Alzheimer’s disease. Brain. 1993;116:497–510.PubMedGoogle Scholar
  78. 78.
    Meltzer CC, Price JC, Mathis CA, Greer PJ, Cantwell MN, Houck PR, et al. PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. Am J Psychiatry. 1999;156:1871–8.PubMedGoogle Scholar
  79. 79.
    Hasselbalch SG, Madsen K, Svarer C, Pinborg LH, Holm S, Paulson OB, et al. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1830–8.PubMedGoogle Scholar
  80. 80.
    Kanerva H, Vilkman H, Någren K, Kilkku O, Kuoppamäki M, Syvälahti E, et al. Brain 5-HT2A receptor occupancy of deramciclane in humans after a single oral administration—a positron emission tomography study. Psychopharmacology. 1999;145:76–81.PubMedGoogle Scholar
  81. 81.
    Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100, 907. J Nucl Med. 1998;39:208–14.PubMedGoogle Scholar
  82. 82.
    Kepe V, Barrio JR, Huang S-H, Ercoli L, Sissarth P, Shoghi-Jarid K, et al. Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc Natl Acad Sci. 2006;103:702–7.PubMedGoogle Scholar
  83. 83.
    Truchot L, Costes SN, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, et al. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology. 2007;69:1012–7.PubMedGoogle Scholar
  84. 84.
    Truchot L, Costes N, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, et al. A distinct [18F]MPPF PET profile in amnestic mild cognitive impairment compared to mild Alzheimer’s disease. Neuroimage. 2008;40:1251–6.PubMedGoogle Scholar
  85. 85.
    Lanctôt KL, Hussey DF, Herrmann N, Black SE, Rusjan PM, Wilson AA, et al. A positron emission tomography study of 5-hydroxytryptamine-1A receptors in Alzheimer disease. Am J Geriatr Psychiatry. 2007;15:888–98.PubMedGoogle Scholar
  86. 86.
    Raje S, Patat AA, Parks V, Schechter L, Plotka A, Paul J, et al. A positron emission tomography study to assess binding of Lecozotan, a novel 5-hydroxytryptamine-1A silent antagonist, to brain 5-HT1A receptors in healthy young and elderly subjects, and in patients with Alzheimer’s disease. Clin Pharm Ther. 2008;83:86–96.Google Scholar
  87. 87.
    Milak MS, Severance AJ, Ogden RT, Prabhakaran J, Kumar JS, Majo VJ, et al. Modeling considerations for 11C-CUMI-101, an agonist radiotracer for imaging serotonin 1A receptor in vivo with PET. J Nucl Med. 2008;49:587–96.PubMedGoogle Scholar
  88. 88.
    Toczek MT, Carson RE, Lang L, Ma Y, Spanaki MV, Der MG, et al. PET imaging of 5HT1A receptor binding in patients with temporal lobe epilepsy. Neurology. 2003;60:749–56.PubMedGoogle Scholar
  89. 89.
    Defraiteur C, Lemaire C, Luxen A, Plenevaux A. Radiochemical synthesis and tissue distribution of p-[18F]DMPPF, a new 5-HT1A ligand for PET, in rats. Nucl Med Biol. 2006;33:667–75.PubMedGoogle Scholar
  90. 90.
    Tipre DN, Zoghbi SS, Liow J-S, Green MV, Seidel J, Ichise M, et al. PET imaging of brain 5-HT1A receptors in rat in vivo with 18F-FCWAY and improvement by successful inhibition of radioligand defluorination with miconazole. J Nucl Med. 2006;47:345–53.PubMedGoogle Scholar
  91. 91.
    Thomas AJ, Hendriksen M, Piggott M, Ferrier IN, Perry E, Ince P, et al. A study of the serotonin transporter in the prefrontal cortex in late-life depression and Alzheimer’s disease with and without depression. Neuropathol Appl Neurobiol. 2006;32:296–303.PubMedGoogle Scholar
  92. 92.
    Abe Y, Aoyagi A, Hara T, Abe K, Yamazaki R, Kumagae Y, et al. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer’s disease. J Pharmacol Sci. 2003;93:95–105.PubMedGoogle Scholar
  93. 93.
    Marner L, Frokjaer V, Kalbitzer JGM, Lehel S, Baaré W, Knudsen GM, et al. Reduced serotonin transporter binding in mesial temporal cortex in Alzheimer’s disease: A [11C]DASB PET study. Neuroimage. 2008;41(Suppl. 2):T45.Google Scholar
  94. 94.
    Halldin C, Lundberg J, Sóvágó J, Gulyás B, Guilloteau D, Vercouillie J, et al. [11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse. 2005;58:173–83.PubMedGoogle Scholar
  95. 95.
    Lundberg J, Odano I, Olsson H, Halldin C, Farde L. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med. 2005;46:1505–15.PubMedGoogle Scholar
  96. 96.
    Huang Y, Hwang DR, Bae SA, Sudo Y, Guo N, Zhu Z, et al. A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM). Nucl Med Biol. 2004;31:543–56.PubMedGoogle Scholar
  97. 97.
    Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis. 2008;13:359–69.PubMedGoogle Scholar
  98. 98.
    Edison P, Archer H, Fox N, Brooks DJ. Relationship between the distribution of microglial activation, amyloid plaque load and cerebral glucose metabolism in Alzheimer’s disease (AD): an 11C-PK11195, 18F-FDG and 11C-PIB PET study. J Am Geriat Society. 2006;54:S6–7.Google Scholar
  99. 99.
    Kropholler MA, Boellaard R, van Berckel BNM, Schuitermaker A, Kloet RW, Lubberink MJ, et al. Evaluation of reference regions for (R)-[11C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. J Cerebr Blood Flow Metabolism. 2007;27:1965–74.Google Scholar
  100. 100.
    Tomasi G, Edison P, Bertoldo A, Roncaroli F, Singh P, Gerhard A, et al. Novel reference region model reveals increased microglial and reduced vascular binding of 11C-(R)-PK11195 in patients with Alzheimer’s disease. J Nucl Med. 2008;49:1249–56.PubMedGoogle Scholar
  101. 101.
    Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon-11-labeled Pittsburgh compound B and carbon-11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66:60–7.PubMedGoogle Scholar
  102. 102.
    Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry. 2008;64:835–41.PubMedGoogle Scholar
  103. 103.
    Brown AK, Fujita M, Fujimura Y, Liow JS, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med. 2007;48:2072–9.PubMedGoogle Scholar
  104. 104.
    Price GW, Ahier RG, Hume SP, Myers R, Manjil L, Cremer JE, et al. In vivo binding to peripheral benzodiazepine binding sites in lesioned rat brain: comparison between [3H]PK11195 and [18F]PK14105 as markers for neuronal damage. J Neurochem. 1990;55:175–85.PubMedGoogle Scholar
  105. 105.
    Zhang M-R, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2.[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem. 2004;47:2228–35.PubMedGoogle Scholar
  106. 106.
    Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50:468–76.PubMedGoogle Scholar
  107. 107.
    Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol. 2009 Mar 28. [Epub ahead of print].Google Scholar
  108. 108.
    Higuchi M, Yanai K, Okamura N, Meguro K, Arai H, Itoh M, et al. Histamine H1 receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience. 2000;99:721–9.PubMedGoogle Scholar
  109. 109.
    Yanai K, Watanabe T, Yokoyama H, Hatazawa J, Iwata R, Ishiwata K, et al. Mapping of histamine H1 receptors in the human brain using [11C]pyrilamine and positron emission tomography. J Neurochem. 1992;59:128–36.PubMedGoogle Scholar
  110. 110.
    Celanire S, Wijtmans M, Talaga P, Leurs R, de Esch IJ. Keynote review: histamine H3 receptor antagonists reach out for the clinic. Drug Discov Today. 2005;10:1613–27.PubMedGoogle Scholar
  111. 111.
    Cunningham VJ, Ashworth S, Rabiner EA, Plisson C, Searle GE, Gunn RN, et al. Kinetic analysis of [11C]GSK189254, a novel radioligand for the H3 receptor in humans using positron emission tomography (PET). Neuroimage. 2008;41(Suppl. 2):T14.Google Scholar
  112. 112.
    Hamill TG, Sato N, Jisuoka M, Tokita S, Krause S, Ryan C, et al. Histamine H3 inverse agonist PET tracers labelled with carbon-11 or fluorine-18. Neuroimage. 2008;41(Suppl. 2):T22.Google Scholar
  113. 113.
    Jansen KL, Faull RL, Storey P, Leslie RA. Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res. 1993;623:299–302.PubMedGoogle Scholar
  114. 114.
    Mishina M, Ohyama M, Ishii K, Kitamura S, Kimura Y, Oda K, et al. Low density of sigma1 receptors in early Alzheimer’s disease. Ann Nucl Med. 2007;22:151–6.Google Scholar
  115. 115.
    Maurice T. Improving Alzheimer’s disease-related cognitive deficits with sigma1 receptor agonists. Drug News Perspect. 2002;15:617–25.PubMedGoogle Scholar
  116. 116.
    Hague SM, Klaffke S, Bandmann O. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J Neurol Neurosurg Psychiatry. 2005;76:1058–63.PubMedGoogle Scholar
  117. 117.
    Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129:2856–66.PubMedGoogle Scholar
  118. 118.
    Jack CR, Lowe VJ, Weigand HJ, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain. 2009;132:1355–65.PubMedGoogle Scholar
  119. 119.
    Scheinin NM, Aalto S, Koikkalainen J, Lötjönen J, Karrasch M, Kemppainen N, et al. Follow-up of [11C]PIB uptake and brain volume in Alzheimer’s disease patients and controls. Neurology. 2009 Sep 2. [Epub ahead of print].Google Scholar
  120. 120.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.PubMedGoogle Scholar
  121. 121.
    Kemppainen NM, Aalto S, Wilson IA, Någren K, Helin S, Brück A, et al. Voxel-based analysis of amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology. 2006;67:1575–80.PubMedGoogle Scholar
  122. 122.
    Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging β-amyloid burden in aging and dementia. Neurology. 2007;68:1718–25.PubMedGoogle Scholar
  123. 123.
    Mintun MA, LaRossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67:446–52.PubMedGoogle Scholar
  124. 124.
    Kemppainen NM, Aalto S, Wilson IA, Någren K, Helin S, Brück A, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology. 2007;68:1603–6.PubMedGoogle Scholar
  125. 125.
    Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposits in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65.PubMedGoogle Scholar
  126. 126.
    Koivunen J, Pirttilä T, Kemppainen N, Aalto S, Herukka S-K, Jauhianen AM, et al. PET amyloid ligand [11C]PIB uptake and cerebrospinal fluid beta-amyloid in mild cognitive impairment. Dem Geriatr Cogn Disord. 2008;26:378–83.Google Scholar
  127. 127.
    Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, et al. Conversion of amyloid positive and negative MCI to AD over three years. An 11C-PIB study. Neurology. 2009;73:754–60.PubMedGoogle Scholar
  128. 128.
    Fagan AM, Mintun MA, Mach RH, Lee S-Y, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann Neurol. 2006;59:512–9.PubMedGoogle Scholar
  129. 129.
    Iokonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131:1630–45.Google Scholar
  130. 130.
    Leinonen V, Alafuzoff I, Aalto S, Suotunen T, Savolainen S, Någren K, et al. Assessment of β-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh compound B. Arch Neurol. 2008;65:1304–9.PubMedGoogle Scholar
  131. 131.
    Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007;27:6174–84.PubMedGoogle Scholar
  132. 132.
    Koivunen J, Verkkoniemi A, Aalto S, Paetau A, Ahonen J-P, Viitanen M, et al. PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimer’s disease. Brain. 2008;131:1845–53.PubMedGoogle Scholar
  133. 133.
    Remes AM, Laru L, Tuominen H, Aalto S, Kemppainen N, Mononen H, et al. Carbon 11-labeled Pittsburgh compound B positron emission tomographic amyloid imaging in patients with APP locus duplication. Arch Neurol. 2008;65:540–4.PubMedGoogle Scholar
  134. 134.
    Engler H, Santillo AF, Wang SX, Lindau M, Savitcheva I, Nordberg A, et al. In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imag. 2008;35:100–6.Google Scholar
  135. 135.
    Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N, et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol, Neurosurg Psychiatry. 2008;79:1331–8.Google Scholar
  136. 136.
    Jellinger KA, Seppi K, Wenning GK. Clinical and neuropathological correlates of Lewy body disease. Acta Neuropathol. 2003;106:188–9.PubMedGoogle Scholar
  137. 137.
    Hyman BT, Marzloff K, Arriagada PV. The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol. 1993;52:594–600.PubMedGoogle Scholar
  138. 138.
    Kadir A, Andreasen N, Almkvist O, Wall A, Forsberg A, Engler H, et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann Neurol. 2008;63:621–31.PubMedGoogle Scholar
  139. 139.
    Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry. 2004;12:584–95.PubMedGoogle Scholar
  140. 140.
    Thurfjell L, Lundqvist R, Lilja J, Rinne JO. The use of intensity profiles for analysis of beta amyloid imaging PET data. Neuroimage. 2008;41(Suppl. 2):T200.Google Scholar
  141. 141.
    Kudo Y, Okamura N, Furumoto S, Tashiro M, Furukawa K, Maruyama M, et al. 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med. 2007;48:553–61.PubMedGoogle Scholar
  142. 142.
    Johnson A, Jeppsson J, Sandell J, Wensbo D, Neelissen J, Juréus A, et al. AZD2184: a radioligand for sensitive detection of beta-amyloid deposits. J Neurochem. 2009;108:1177–86.PubMedGoogle Scholar
  143. 143.
    Andersson J, Varnäs K, Cselényi Z, Gulyás B, Finnema S, Swahn B-M, et al. Radiosynthesis of an improved amyloid probe, [11C]AZD2184: PET characterization in the cynomolgus monkey and human brain. J Label Compd Radiopharm 2009;52(Suppl) (in press).Google Scholar
  144. 144.
    Nyberg S, Eriksdotter Jönhagen M, Cselényi Z, Halldin C, Julin P, et al. Detection of amyloid in Alzheimer’s disease with positron emission tomography using [11C]AZD2184. Eur J Nucl Med Mol Imag (in press).Google Scholar
  145. 145.
    Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.PubMedGoogle Scholar
  146. 146.
    Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, et al. Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94–9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7:129–35.PubMedGoogle Scholar
  147. 147.
    Mason NS, Klunk WE, Debnath M, Flatt N, Huang G, Shao L, et al. Synthesis and evaluation of (18F)PIB analogs as Aβ plaque PET imaging agents. J Label Compd Radiopharm. 2007;50(Suppl. 1):S87.Google Scholar
  148. 148.
    Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer’s disease. Am J Geriatr Psychiatry. 2002;10:24–35.PubMedGoogle Scholar
  149. 149.
    Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355:2652–63.PubMedGoogle Scholar
  150. 150.
    Barg J, Belcheva M, Rowinski J, Ho A, Burke WJ, Chung HD, et al. Opioid receptor density changes in Alzheimer amygdala and putamen. Brain Res. 1993;632:209–15.PubMedGoogle Scholar
  151. 151.
    Cohen RM, Andreason PJ, Doudet DJ, Carson RE, Sunderland T. Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. J Neurol Sci. 1997;148:171–80.PubMedGoogle Scholar
  152. 152.
    Esposito G, Giovacchini G, Liow J-S, Bhattacharjee AK, Greenstein D, Schapiro M, et al. Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med. 2008;49:1414–21.PubMedGoogle Scholar
  153. 153.
    Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, et al. Adenosine A1 receptors using 8-dicyclopropylmethyl-1-[11C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med. 2008;22:841–7.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kjell Någren
    • 1
    Email author
  • Christer Halldin
    • 2
  • Juha O. Rinne
    • 3
  1. 1.Department of Nuclear Medicine, PET and Cyclotron UnitOdense University HospitalOdense CDenmark
  2. 2.Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry SectionKarolinska University Hospital SolnaStockholmSweden
  3. 3.Turku PET CentreTurkuFinland

Personalised recommendations