Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging

  • Thuy A. Tran
  • Daniel Rosik
  • Lars Abrahmsén
  • Mattias Sandström
  • Anna Sjöberg
  • Helena Wållberg
  • Sara Ahlgren
  • Anna Orlova
  • Vladimir Tolmachev
Original Article

Abstract

Purpose

The purpose of this study was to design and evaluate a novel platform for labelling of Affibody molecules, enabling both recombinant and synthetic production and site-specific labelling with 99mTc or trivalent radiometals.

Methods

The HER2-specific Affibody molecule PEP05352 was made by peptide synthesis. The chelator sequence SECG (serine-glutamic acid-cysteine-glycine) was anchored on the C-terminal to allow 99mTc labelling. The cysteine can alternatively serve as a conjugation site of the chelator DOTA for indium labelling. The resulting 99mTc- and 111In-labelled Affibody molecules were evaluated both in vitro and in vivo.

Results

Both conjugates retained their capacity to bind to HER2 receptors in vitro and in vivo. The tumour to blood ratio in LS174T xenografts was 30 at 4 h post-injection for both conjugates. Biodistribution data showed that the 99mTc-labelled Affibody molecule had a fourfold lower kidney accumulation compared with the 111In-labelled Affibody molecule while the accumulation in other organs was similar. Gamma camera imaging of the conjugates could clearly visualise the tumours 4 h after injection.

Conclusion

Incorporation of the C-terminal SECG sequence in Affibody molecules provides a general multifunctional platform for site-specific labelling with different nuclides (technetium, indium, gallium, cobalt or yttrium) and for a flexible production (chemical synthesis or recombinant).

Keywords

HER2 Affibody molecules Peptide synthesis Imaging 

Notes

Acknowledgements

This research was financially supported by grant from the Swedish Cancer Society (Cancerfonden).

References

  1. 1.
    Nygren PA. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008;275:2668–76. doi: 10.1111/j.1742-4658.2008.06438.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Tran T, Tolmachev V. Affibody molecules, a new class of targeting agents for molecular imaging. In: Chen X, editor. Recent advances of bioconjugation chemistry in molecular imaging. Kerala, India: Research Signpost; 2008. p. 1–17.Google Scholar
  3. 3.
    Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68. doi: 10.1517/14712598.7.4.555.CrossRefPubMedGoogle Scholar
  4. 4.
    Orlova A, Wållberg H, Stone-Elander S, Tolmachev V. On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of 124I-labelled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 2009;50:417–25. doi: 10.2967/jnumed.108.057919.CrossRefPubMedGoogle Scholar
  5. 5.
    Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr Pharm Des 2008;14:2999–3019. doi: 10.2174/138161208786404290.CrossRefPubMedGoogle Scholar
  6. 6.
    Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 2003;8:307–25. doi: 10.1634/theoncologist.8-4-307.CrossRefPubMedGoogle Scholar
  7. 7.
    Verri E, Guglielmini P, Puntoni M, Perdelli L, Papadia A, Lorenzi P, et al. HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Clinical study. Oncology 2005;68:154–61. doi: 10.1159/000086958.CrossRefPubMedGoogle Scholar
  8. 8.
    Høgdall EV, Christensen L, Kjaer SK, Blaakaer J, Bock JE, Glud E, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer 2003;98:66–73. doi: 10.1002/cncr.11476.CrossRefPubMedGoogle Scholar
  9. 9.
    Kolla SB, Seth A, Singh MK, Gupta NP, Hemal AK, Dogra PN, et al. Prognostic significance of Her2/neu overexpression in patients with muscle invasive urinary bladder cancer treated with radical cystectomy. Int Urol Nephrol 2008;40:321–7. doi: 10.1007/s11255-007-9283-x.CrossRefPubMedGoogle Scholar
  10. 10.
    Nakamura H, Kawasaki N, Taguchi M, Kabasawa K. Association of HER-2 overexpression with prognosis in nonsmall cell lung carcinoma: a metaanalysis. Cancer 2005;103:1865–73. doi: 10.1002/cncr.20957.CrossRefPubMedGoogle Scholar
  11. 11.
    Bast RC Jr, Ravdin P, Hayes DF, Bates S, Fritsche H Jr, Jessup JM, et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2001;19:1865–78.PubMedGoogle Scholar
  12. 12.
    Liu S, Edwards DS, Barrett JA. 99mTc labeling of highly potent small peptides. Bioconjug Chem 1997;8:621–36. doi: 10.1021/bc970058b.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 2008;60:1347–70. doi: 10.1016/j.addr.2008.04.006.CrossRefPubMedGoogle Scholar
  14. 14.
    Lundqvist H, Tolmachev V. Targeting peptides and positron emission tomography. Biopolymers 2002;66:381–92. doi: 10.1002/bip. 10348.CrossRefPubMedGoogle Scholar
  15. 15.
    Ahlgren S, Orlova A, Rosik D, Sandström M, Sjöberg A, Baastrup B, et al. Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules. Bioconjug Chem 2008;19:235–43. doi: 10.1021/bc700307y.CrossRefPubMedGoogle Scholar
  16. 16.
    Tran T, Engfeldt T, Orlova A, Widström C, Bruskin A, Tolmachev V, et al. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem 2007;18:549–58. doi: 10.1021/bc060291m.CrossRefPubMedGoogle Scholar
  17. 17.
    Ahlgren S, Wållberg H, Tran TA, Widström C, Hjertman M, Abrahmsén L, et al. Targeting of HER2-expressing tumors using a site-specifically 99mTc-labeled recombinant Affibody molecule ZHER2:2395 with C-terminally engineered cysteine. J Nucl Med 2009;50:781–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Engfeldt T, Orlova A, Tran T, Bruskin A, Widström C, Karlström AE, et al. Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 2007;34:722–33. doi: 10.1007/s00259-006-0266-4.CrossRefPubMedGoogle Scholar
  19. 19.
    Engfeldt T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsen L, et al. 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 2007;34:1843–53. doi: 10.1007/s00259-007-0474-6.CrossRefPubMedGoogle Scholar
  20. 20.
    Tran T, Engfeldt T, Orlova A, Sandström M, Feldwisch J, Abrahmsén L, et al. 99mTc-maEEE-ZHER2:342, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 2007;18:1956–64. doi: 10.1021/bc7002617.CrossRefPubMedGoogle Scholar
  21. 21.
    Ekblad T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsén L, et al. Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging 2008;35:2245–55. doi: 10.1007/s00259-008-0845-7.CrossRefPubMedGoogle Scholar
  22. 22.
    Tran TA, Ekblad T, Orlova A, Sandström M, Feldwisch J, Wennborg A, et al. Effects of lysine-containing mercaptoacetyl-based chelators on the biodistribution of 99mTc-labeled anti-HER2 Affibody molecules. Bioconjug Chem 2008;19:2568–76. doi: 10.1021/bc800244b.CrossRefPubMedGoogle Scholar
  23. 23.
    Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandström M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 2007;67:2178–86. doi: 10.1158/0008-5472.CAN-06-2887.CrossRefPubMedGoogle Scholar
  24. 24.
    Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J. [18F]FBEM-ZHER2:342-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 2008;35:1008–18. doi: 10.1007/s00259-007-0658-0.CrossRefPubMedGoogle Scholar
  25. 25.
    Mume E, Orlova A, Larsson B, Nilsson AS, Nilsson FY, Sjöberg S, et al. Evaluation of ((4-hydroxyphenyl)ethyl) maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2005;16:1547–55. doi: 10.1021/bc050056o.CrossRefPubMedGoogle Scholar
  26. 26.
    Tolmachev V, Mume E, Sjöberg S, Frejd FY, Orlova A. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur J Nucl Med Mol Imaging 2009;36:692–701. PMID: 19066886CrossRefPubMedGoogle Scholar
  27. 27.
    Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 2008;52:166–73.PubMedGoogle Scholar
  28. 28.
    De León-Rodríguez LM, Kovacs Z. The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjug Chem 2008;19:391–402. doi: 10.1021/bc700328s.CrossRefPubMedGoogle Scholar
  29. 29.
    Tanaka K, Fukase K. PET (positron emission tomography) imaging of biomolecules using metal-DOTA complexes: a new collaborative challenge by chemists, biologists, and physicians for future diagnostics and exploration of in vivo dynamics. Org Biomol Chem 2008;6:815–28. doi: 10.1039/b718157b.CrossRefPubMedGoogle Scholar
  30. 30.
    Ali MS, Quadri SM. Maleimido derivatives of diethylenetriaminepentaacetic acid and triethylenetetraaminehexaacetic acid: their synthesis and potential for specific conjugation with biomolecules. Bioconjug Chem 1996;7:576–83. doi: 10.1021/bc960051e.CrossRefPubMedGoogle Scholar
  31. 31.
    Tolmachev V, Xu H, Wållberg H, Ahlgren S, Hjertman M, Sjöberg A, et al. Evaluation of a maleimido derivative of CHX-A″-DTPA for site-specific labeling of affibody molecules. Bioconjug Chem 2008;19:1579–87. doi: 10.1021/bc800110y.CrossRefPubMedGoogle Scholar
  32. 32.
    Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701–6. doi: 10.1038/nbt968.CrossRefPubMedGoogle Scholar
  33. 33.
    Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A, et al. A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res 2004;64:6200–6. doi: 10.1158/0008-5472.CAN-03-2382.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thuy A. Tran
    • 1
  • Daniel Rosik
    • 2
  • Lars Abrahmsén
    • 2
  • Mattias Sandström
    • 3
  • Anna Sjöberg
    • 2
  • Helena Wållberg
    • 4
  • Sara Ahlgren
    • 5
  • Anna Orlova
    • 1
    • 2
  • Vladimir Tolmachev
    • 1
    • 2
    • 5
  1. 1.Department of Radiology, Oncology and Clinical Immunology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Affibody ABBrommaSweden
  3. 3.Hospital Physics, Department of OncologyUppsala University HospitalUppsalaSweden
  4. 4.School of Biotechnology, Division of Molecular BiotechnologyRoyal Institute of TechnologyStockholmSweden
  5. 5.Division of Nuclear Medicine, Department of Medical SciencesUppsala UniversityUppsalaSweden

Personalised recommendations