18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma

  • Jeong Won Lee
  • Keon Wook Kang
  • Sung-Hye Park
  • Sang Mi Lee
  • Jin Chul Paeng
  • June-Key Chung
  • Myung Chul Lee
  • Dong Soo Lee
Original Article



The purpose of this study was to investigate the role of 18F-fluorodeoxyglucose (FDG) PET in detecting high-grade meningioma and predicting the recurrence in patients with meningioma after surgical resection.


Fifty-nine patients (27 men and 32 women) with intracranial meningioma who underwent preoperative FDG PET and subsequent surgical resection were enrolled. All patients underwent clinical follow-up for tumor recurrence with a mean duration of 34±20 months. The tumor to gray matter ratio (TGR) of FDG uptake was calculated and a receiver-operating characteristic (ROC) curve of the TGR was drawn to determine the cutoff value of the TGR for detection of high-grade meningioma. Further, univariate analysis with the log-rank test was performed to assess the predictive factors of meningioma recurrence.


The TGR in high-grade meningioma (WHO grade II and III) was significantly higher than that in low-grade ones (WHO grade I) (p=0.002) and significantly correlated with the MIB-1 labeling index (r=0.338, p=0.009) and mitotic count of the tumor (r=0.284, p=0.03). The ROC analysis revealed that the TGR of 1.0 was the best cutoff value for detecting high-grade meningioma with a sensitivity of 43%, specificity of 95%, and accuracy of 81%. Of 59 patients, 5 (9%) had a recurrent event. In the log-rank test, the TGR, MIB-1 labeling index, presence of brain invasion, and WHO grade were significantly associated with tumor recurrence. The cumulative recurrence-free survival rate of patients with a TGR of 1.0 or less was significantly higher than that of patients with a TGR of more than 1.0 (p=0.0003)


FDG uptake in meningioma was the significant predictive factor of tumor recurrence and significantly correlated with the proliferative potential of the tumor.


Meningioma Positron emission tomography (PET) 18F-fluorodeoxyglucose (FDG) Recurrence Prognosis 


  1. 1.
    Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, et al. Meningioma. Crit Rev Oncol Hematol 2008;67:153–71. doi:10.1016/j.critrevonc.2008.01.010.PubMedCrossRefGoogle Scholar
  2. 2.
    McCarthy BJ, Davis FG, Freels S, Surawicz TS, Damek DM, Grutsch J, et al. Factors associated with survival in patients with meningioma. J Neurosurg 1998;88:831–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Maier H, Ofner D, Hittmair A, Kitz K, Budka H. Classic, atypical, and anaplastic meningioma: three histopathological subtypes of clinical relevance. J Neurosurg 1992;77:616–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Commins DL, Atkinson RD, Burnett ME. Review of meningioma histopathology. Neurosurg Focus 2007;23:E3. doi:10.3171/FOC-07/10/E3.PubMedCrossRefGoogle Scholar
  5. 5.
    Goyal LK, Suh JH, Mohan DS, Prayson RA, Lee J, Barnett GH. Local control and overall survival in atypical meningioma: a retrospective study. Int J Radiat Oncol Biol Phys 2000;46:57–61. doi:10.1016/S0360-3016(99)00349-1.PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi JA, Ueba T, Hashimoto N, Nakashima Y, Katsuki N. The combination of mitotic and Ki-67 indices as a useful method for predicting short-term recurrence of meningiomas. Surg Neurol 2004;61:149–55. doi:10.1016/S0090-3019(03)00575-5.PubMedCrossRefGoogle Scholar
  7. 7.
    Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 1995;195:47–52.PubMedGoogle Scholar
  8. 8.
    Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003;64:227–37. doi:10.1023/A:1025665820001.PubMedCrossRefGoogle Scholar
  9. 9.
    Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 2005;43:35–47. doi:10.1016/j.rcl.2004.09.009.PubMedCrossRefGoogle Scholar
  10. 10.
    Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 1987;164:521–6.PubMedGoogle Scholar
  11. 11.
    Cremerius U, Bares R, Weis J, Sabri O, Mull M, Schröder JM, et al. Fasting improves discrimination of grade 1 and atypical or malignant meningioma in FDG-PET. J Nucl Med 1997;38:26–30.PubMedGoogle Scholar
  12. 12.
    Lippitz B, Cremerius U, Mayfrank L, Bertalanffy H, Raoofi R, Weis J, et al. PET-study of intracranial meningiomas: correlation with histopathology, cellularity and proliferation rate. Acta Neurochir Suppl 1996;65:108–11.PubMedGoogle Scholar
  13. 13.
    Park YS, Jeon BC, Oh HS, Lee SM, Chun BK, Chang HK. FDG PET/CT assessment of the biological behavior of meningiomas. J Korean Neurosurg Soc 2006;40:428–33.Google Scholar
  14. 14.
    Perry A, Louis DN, Scheithauer BW, Budka H, von Deimling A. Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, et al., editors. World Health Organization classification of tumours of the central nervous system. 4th ed. Lyon: IARC; 2007. p. 164–72.Google Scholar
  15. 15.
    Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305–32. doi:10.1148/radiol.2312021185.PubMedCrossRefGoogle Scholar
  16. 16.
    Iuchi T, Iwasate Y, Namba H, Osato K, Saeki N, Yamaura A, et al. Glucose and methionine uptake and proliferative activity in meningiomas. Neurol Res 1999;21:640–4.PubMedGoogle Scholar
  17. 17.
    Bénard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 2003;33:148–62. doi:10.1053/snuc.2003.127304.PubMedCrossRefGoogle Scholar
  18. 18.
    Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008;10:1–18. doi:10.1007/s11307-007-0115-2.PubMedCrossRefGoogle Scholar
  19. 19.
    Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000;27:542–9. doi:10.1007/s002590050541.PubMedCrossRefGoogle Scholar
  20. 20.
    Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002;29:176–82. doi:10.1007/s00259-001-0690-4.PubMedCrossRefGoogle Scholar
  21. 21.
    Gudjonsson O, Blomquist E, Lilja A, Ericson H, Bergström M, Nyberg G. Evaluation of the effect of high-energy proton irradiation treatment on meningiomas by means of 11C-L-methionine PET. Eur J Nucl Med 2000;27:1793–9. doi:10.1007/s002590000335.PubMedCrossRefGoogle Scholar
  22. 22.
    Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44. doi:10.1016/j.ijrobp. 2006.02.047.PubMedGoogle Scholar
  23. 23.
    Ko KW, Nam DH, Kong DS, Lee JI, Park K, Kim JH. Relationship between malignant subtypes of meningioma and clinical outcome. J Clin Neurosci 2007;14:747–53. doi:10.1016/j.jocn.2006.05.005.PubMedCrossRefGoogle Scholar
  24. 24.
    Böker DK, Meurer H, Gullotta F. Recurring intracranial meningiomas. Evaluation of some factors predisposing for tumor recurrence. J Neurosurg Sci 1985;29:11–7.PubMedGoogle Scholar
  25. 25.
    Sasaki R, Komaki R, Macapinlac H, Erasmus J, Allen P, Forster K, et al. [18F] fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 2005;23:1136–43. doi:10.1200/JCO.2005.06.129.PubMedCrossRefGoogle Scholar
  26. 26.
    Swisher SG, Maish M, Erasmus JJ, Correa AM, Ajani JA, Bresalier R, et al. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 2004;78:1152–60. doi:10.1016/j.athoracsur.2004.04.046.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakata B, Nishimura S, Ishikawa T, Ohira M, Nishino H, Kawabe J, et al. Prognostic predictive value of 18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. Int J Oncol 2001;19:53–8.PubMedGoogle Scholar
  28. 28.
    Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988;62:1074–8. doi:10.1002/1097-0142(19880915)62:6<1074::AID-CNCR2820620609>3.0.CO;2-H.PubMedCrossRefGoogle Scholar
  29. 29.
    Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Shishido F, et al. Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 1994;73:2386–94. doi:10.1002/1097-0142(19940501)73:9<2386::AID-CNCR2820730923>3.0.CO;2-W.PubMedCrossRefGoogle Scholar
  30. 30.
    Jääskeläinen J, Haltia M, Servo A. Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome. Surg Neurol 1986;25:233–42. doi:10.1016/0090-3019(86)90233-8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jeong Won Lee
    • 1
    • 2
  • Keon Wook Kang
    • 1
    • 2
    • 3
  • Sung-Hye Park
    • 4
  • Sang Mi Lee
    • 1
  • Jin Chul Paeng
    • 1
  • June-Key Chung
    • 1
    • 2
    • 3
  • Myung Chul Lee
    • 1
    • 3
  • Dong Soo Lee
    • 1
    • 2
    • 3
  1. 1.Department of Nuclear MedicineSeoul National University College of MedicineJongno-gu, SeoulKorea
  2. 2.Cancer Research InstituteSeoul National UniversitySeoulKorea
  3. 3.Institute of Radiation MedicineSeoul National University College of MedicineSeoulKorea
  4. 4.Department of PathologySeoul National University College of MedicineSeoulKorea

Personalised recommendations