Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment

  • Sebastian A. Müller
  • Korbinian Holzapfel
  • Christof Seidl
  • Uwe Treiber
  • Bernd J. Krause
  • Reingard Senekowitsch-Schmidtke
Original Article



Choline derivatives labelled with positron emitters are successfully used for PET imaging of prostate cancer patients. Since little is known about uptake mechanisms, the aim of this study was to characterize choline uptake in prostate cancer cells, also following anti-androgen treatment or chemotherapy.


Choline uptake in prostate cancer cells (LNCaP, PC-3) and Michaelis-Menten kinetics were analysed using different concentrations of 3H-choline via liquid scintillation counting. Inhibition of 3H-choline uptake was assayed in the presence of hemicholinium-3 (HC-3), unlabelled choline, guanidine and tetraethylammonium (TEA), an inhibitor of the organic cation transporter (OCT). Changes in choline uptake triggered by bicalutamide and docetaxel were evaluated and choline transporters were detected via Western blotting.


Michaelis-Menten kinetics yielded a saturable transport with Km values of 6.9 and 7.0 µmol/l choline for LNCaP and PC-3 cells, respectively. Treatment of cells with bicalutamide and docetaxel caused an increase in total choline uptake but had no significant effect on Km values. Uptake of 3H-choline was NaCl dependent and 4.5-fold higher in LNCaP cells than in PC-3 cells. 3H-Choline uptake was reduced by 92–96% using HC-3 and unlabelled choline, by 63–69% using guanidine and by 20% using TEA. The high-affinity choline transporter was detected via Western blotting.


Choline uptake in prostate cancer cells is accomplished both by a transporter-mediated and a diffusion-like component. Results of inhibition experiments suggest that uptake is mediated by a selective choline transporter rather than by the OCT. Bicalutamide- and docetaxel-induced changes in total choline uptake could affect PET tumour imaging.


[methyl-3H]Choline Prostate cancer cell lines LNCaP and PC-3 Anti-androgen bicalutamide Chemotherapeutic agent docetaxel 11C-Choline PET 



We would like to thank A. Lehmer from the Department of Urology, Technische Universität München, for providing the human prostate cancer cell lines LNCaP, PC-3 and DU145.

Conflicts of interest



  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007;57:43–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Schöder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 2004;34:274–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Craft N, Chhor C, Tran C, Belldegrun A, DeKernion J, Witte ON, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res 1999;59:5030–6.PubMedGoogle Scholar
  4. 4.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:33–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Beer TM, Garzotto M, Henner WD, Eilers KM, Wersinger EM. Multiple cycles of intermittent chemotherapy in metastatic androgen-independent prostate cancer. Br J Cancer 2004;91:1425–7.PubMedGoogle Scholar
  6. 6.
    Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351:1513–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 2008;26:242–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson J, Abrahamsson PA, Crawford D, Miller K, Tombal B. Management of advanced prostate cancer: can we improve on androgen deprivation therapy? BJU Int 2008;101:1497–501.PubMedCrossRefGoogle Scholar
  10. 10.
    Damber JE, Aus G. Prostate cancer. Lancet 2008;371:1710–21.PubMedCrossRefGoogle Scholar
  11. 11.
    De Dosso S, Berthold DR. Docetaxel in the management of prostate cancer: current standard of care and future directions. Expert Opin Pharmacother 2008;9:1969–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 2006;47:1249–54.PubMedGoogle Scholar
  13. 13.
    Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006;33:1387–98.PubMedCrossRefGoogle Scholar
  14. 14.
    Rinnab L, Mottaghy FM, Blumstein NM, Reske SN, Hautmann RE, Hohl K, et al. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int 2007;100:786–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [18F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:253–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:18–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Reske SN. [11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 2008;35:1740–1.PubMedCrossRefGoogle Scholar
  18. 18.
    Tuncel M, Souvatzoglou M, Herrmann K, Stollfuss J, Schuster T, Weirich G, et al. [11C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 2008;35:689–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem 2003;90:525–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Casciani E, Gualdi GF. Prostate cancer: value of magnetic resonance spectroscopy 3D chemical shift imaging. Abdom Imaging 2006;31:490–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 1996;198:795–805.PubMedGoogle Scholar
  22. 22.
    Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2000;2:166–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramírez de Molina A, Penalva V, Lucas L, Lacal JC. Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. Oncogene 2002;21:937–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Ramírez de Molina A, Rodríguez-González A, Gutiérrez R, Martínez-Piñeiro L, Sánchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 2002;296:580–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Ratnam S, Kent C. Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines. Arch Biochem Biophys 1995;323:313–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 1996;16:1375–80.PubMedGoogle Scholar
  27. 27.
    Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 2001;61:3599–603.PubMedGoogle Scholar
  28. 28.
    Hara T, Bansal A, DeGrado TR. Choline transporter as a novel target for molecular imaging of cancer. Mol Imaging 2006;5:498–509.PubMedGoogle Scholar
  29. 29.
    Lockman PR, Allen DD. The transport of choline. Drug Dev Ind Pharm 2002;28:749–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Friedrich A, George RL, Bridges CC, Prasad PD, Ganapathy V. Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochem Biophys Acta 2001;1512:299–307.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffmann K, Grafe F, Wohlrab W, Neubert RH, Brandsch M. Functional characterization of a high-affinity choline transport system in human keratinocytes. J Invest Dermatol 2002;119:118–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Holzapfel K, Müller SA, Seidl C, Grosu AL, Schwaiger M, Senekowitsch-Schmidtke R. Effects of irradiation on the [methyl-3H]choline uptake in the human prostate cancer cell lines LNCaP and PC3. Strahlenther Onkol 2008;184:319–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 1997;16:871–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998;39:990–5.PubMedGoogle Scholar
  35. 35.
    Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999;36:31–5.PubMedCrossRefGoogle Scholar
  36. 36.
    de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. [11C]choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44:32–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate-cancer: a comparison with [18F]fluordeoxyglucose-positron emission tomography. J Urol 2003;169:1337–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 2004;31:317–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Jager PL, de Korte MA, Lub-de Hooge MN, van Waarde A, Koopmans KP, Perik PJ, et al. Molecular imaging: what can be used today. Cancer Imaging 2005;5:S27–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 2007;34:45–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 2008;35:1065–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Haeffner EW. Studies on choline permeation through the plasma membrane and its incorporation into phosphatidyl choline of Ehrlich-Lettré-ascites tumor cells in vitro. Eur J Biochem 1975;51:219–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Schloss P, Mayser W, Niehuis A, Betz H. Na(+)-dependent high-affinity uptake of choline into cultured fibroblasts. Biochem Biophys Res Commun 1994;199:1320–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Janardhan S, Srivani P, Sastry GN. Choline kinase: an important target for cancer. Curr Med Chem 2006;13:1169–86.PubMedCrossRefGoogle Scholar
  45. 45.
    Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN. Cancer imaging with fluorine-18-labeled choline derivatives. Semin Nucl Med 2007;37:420–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Apparsundaram S, Ferguson SM, George AL Jr, Blakely RD. Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Biochem Biophys Res Commun 2000;276:862–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Haberkorn U, Reinhardt M, Strauss LG, Oberdorfer F, Berger MR, Altmann A, et al. Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 1992;33:1981–7.PubMedGoogle Scholar
  48. 48.
    Haberkorn U, Morr I, Oberdorfer F, Bellemann ME, Blatter J, Altmann A, et al. Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 1994;35:1842–50.PubMedGoogle Scholar
  49. 49.
    Schaider H, Haberkorn U, Berger MR, Oberdorfer F, Morr I, van Kaick G. Application of alpha- aminoisobutyric acid, L-methionine, thymidine and 2-fluoro-2-D-glucose to monitor effects of chemotherapy in a human colon carcinoma cell line. Eur J Nucl Med 1996;23:55–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Li Y, Li X, Hussain M, Sarkar FH. Regulation of microtubule, apoptosis, and cell cycle-related genes by taxotere in prostate cancer cells analyzed by microarray. Neoplasia 2004;6:158–67.PubMedCrossRefGoogle Scholar
  51. 51.
    Li Y, Kucuk O, Hussain M, Abrams J, Cher ML, Sarkar FH. Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 2006;66:4816–25.PubMedCrossRefGoogle Scholar
  52. 52.
    Mantwill K, Köhler-Vargas N, Bernshausen A, Bieler A, Lage H, Kaszubiak A, et al. Inhibition of the multidrug-resistant phenotype by targeting YB-1 with a conditionally oncolytic adenovirus: implications for combinatorial treatment regimen with chemotherapeutic agents. Cancer Res 2006;66:7195–202.PubMedCrossRefGoogle Scholar
  53. 53.
    Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW, et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 1999;91:1869–76.PubMedCrossRefGoogle Scholar
  54. 54.
    Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E. Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 1992;31:2393–9.PubMedCrossRefGoogle Scholar
  55. 55.
    St John Floyd M Jr, Teahan SJ, Fitzpatrick JM, Watson RW. Differential mechanisms of bicalutamide-induced apoptosis in prostate cell lines. Prostate Cancer Prostatic Dis 2009;12:25–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Davoodpour P, Bergström M, Landström M. Effects of 2-methoxyestradiol on proliferation, apoptosis and PET-tracer uptake in human prostate cancer cell aggregates. Nucl Med Biol 2004;31:867–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sebastian A. Müller
    • 1
  • Korbinian Holzapfel
    • 1
  • Christof Seidl
    • 1
  • Uwe Treiber
    • 2
  • Bernd J. Krause
    • 1
  • Reingard Senekowitsch-Schmidtke
    • 1
  1. 1.Department of Nuclear MedicineTechnische Universität MünchenMunichGermany
  2. 2.Department of UrologyTechnische Universität MünchenMunichGermany

Personalised recommendations