Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins

  • Ferdinando Squitieri
  • Sara Orobello
  • Milena Cannella
  • Tiziana Martino
  • Pantaleo Romanelli
  • Giampiero Giovacchini
  • Luigi Frati
  • Luigi Mansi
  • Andrea Ciarmiello
Original Article



Huntington disease (HD) mutation increases gain-of-toxic functions contributing to glutamate-mediated excitotoxicity. Riluzole interferes with glutamatergic neurotransmission, thereby reducing excitotoxicity, enhancing neurite formation in damaged motoneurons and increasing serum concentrations of BDNF, a brain cortex neurotrophin protecting striatal neurons from degeneration.


We investigated metabolic and volumetric differences in distinct brain areas between 11 riluzole-treated and 12 placebo-treated patients by MRI and 18F-fluoro-2-deoxy-d-glucose (FDG) PET scanning, according to fully automated protocols. We also investigated the influence of riluzole on peripheral growth factor blood levels.


Placebo-treated patients showed significantly greater proportional volume loss of grey matter and decrease in metabolic FDG uptake than patients treated with riluzole in all cortical areas (p<0.05). The decreased rate of metabolic FDG uptake correlated with worsening clinical scores in placebo-treated patients, compared to those who were treated with riluzole. The progressive decrease in metabolic FDG uptake observed in the frontal, parietal and occipital cortex correlated linearly with the severity of motor scores calculated by Unified Huntington Disease Rating Scale (UHDRS-I) in placebo-treated patients. Similarly, the rate of metabolic changes in the frontal and temporal areas of the brain cortex correlated linearly with worsening behavioural scores calculated by UHDRS-III in the placebo-treated patients. Finally, BDNF and transforming growth factor beta-1 serum levels were significantly higher in patients treated with riluzole.


The linear correlation between decreased metabolic FDG uptake and worsening clinical scores in the placebo-treated patients suggests that FDG-PET may be a valuable procedure to assess brain markers of HD.


FDG-PET scan Volumetric MRI Neurotrophins Brain-derived neurotrophic factor Transforming growth factor 



We thank Dr. Jenny Sassone for providing help in setting up the ELISA analysis of patients’ serum. We also thank the European Huntington’s Disease (EURO-HD) Network, the patients’ family association ‘Associazione Italiana Corea di Huntington-Neuromed’, the Italian Society of Hospital Neurologists (S.N.O., ‘lascito Gobessi’) and the Italian Health Ministry (COFIN 2006; finalizzato ex art.56 2007), for their support to F.S. The financial support of Telethon-Italy to F.S. (grant no. GGP06181) is gratefully acknowledged.


  1. 1.
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985;44:559–77. doi: 10.1097/00005072-198511000-00003.PubMedCrossRefGoogle Scholar
  2. 2.
    Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med 2006;47:215–22.PubMedGoogle Scholar
  3. 3.
    Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 2008;131:1057–68. doi: 10.1093/brain/awn025.PubMedCrossRefGoogle Scholar
  4. 4.
    Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 1986;321:168–71. doi: 10.1038/321168a0.PubMedCrossRefGoogle Scholar
  5. 5.
    Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004;118:127–38. doi: 10.1016/j.cell.2004.06.018.PubMedCrossRefGoogle Scholar
  6. 6.
    Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet 2007;144B:574–7. doi: 10.1002/ajmg.b.30501.PubMedCrossRefGoogle Scholar
  7. 7.
    Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001;293:493–8. doi: 10.1126/science.1059581.PubMedCrossRefGoogle Scholar
  8. 8.
    Schaub RT, Anders D, Golz G, Göhringer K, Hellweg R. Serum nerve growth factor concentration and its role in the preclinical stage of dementia. Am J Psychiatry 2002;159:1227–9. doi: 10.1176/appi.ajp.159.7.1227.PubMedCrossRefGoogle Scholar
  9. 9.
    Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 2006;116:3060–9. doi: 10.1172/JCI27341.PubMedCrossRefGoogle Scholar
  10. 10.
    Pérez-Navarro E, Arenas E, Reiriz J, Calvo N, Alberch J. Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Neuroscience 1996;75:345–52. doi: 10.1016/0306-4522(96)00336-3.PubMedCrossRefGoogle Scholar
  11. 11.
    Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, Nicoletti F. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J Neurosci 1998;18:9594–600.PubMedGoogle Scholar
  12. 12.
    Browne SE, Beal MF. Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 2006;8:2061–73. doi: 10.1089/ars.2006.8.2061.PubMedCrossRefGoogle Scholar
  13. 13.
    Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 2006;15:965–77. doi: 10.1093/hmg/ddl013.PubMedCrossRefGoogle Scholar
  14. 14.
    Feigin A, Ghilardi MF, Huang C, Ma Y, Carbon M, Guttman M, et al. Preclinical Huntington’s disease: compensatory brain responses during learning. Ann Neurol 2006;59:53–9. doi: 10.1002/ana.20684.PubMedCrossRefGoogle Scholar
  15. 15.
    Squitieri F, Ciarmiello A, Di Donato S, Frati L. The search for cerebral biomarkers of Huntington’s disease: a review of genetic models of age at onset prediction. Eur J Neurol 2006;13:408–15. doi: 10.1111/j.1468-1331.2006.01264.x.PubMedCrossRefGoogle Scholar
  16. 16.
    Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005;37:526–31. doi: 10.1038/ng1542.PubMedCrossRefGoogle Scholar
  17. 17.
    Squitieri F, Berardelli A, Nargi E, Castellotti B, Mariotti C, Cannella M, et al. Atypical movement disorders in the early stages of Huntington’s disease: clinical and genetic analysis. Clin Genet 2000;58:50–6. doi: 10.1034/j.1399-0004.2000.580108.x.PubMedCrossRefGoogle Scholar
  18. 18.
    Bergerot A, Shortland PJ, Anand P, Hunt SP, Carlstedt T. Co-treatment with riluzole and GDNF is necessary for functional recovery after ventral root avulsion injury. Exp Neurol 2004;187:359–66. doi: 10.1016/j.expneurol.2004.02.003.PubMedCrossRefGoogle Scholar
  19. 19.
    Katoh-Semba R, Asano T, Ueda H, Morishita R, Takeuchi IK, Inaguma Y, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J 2002;16:1328–30.PubMedGoogle Scholar
  20. 20.
    Squitieri F, Ciammola A, Colonnese C, Ciarmiello A. Neuroprotective effects of riluzole in Huntington’s disease. Eur J Nucl Med Mol Imaging 2008;35:221–2. doi: 10.1007/s00259-007-0615-y.PubMedCrossRefGoogle Scholar
  21. 21.
    Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 2003;126:946–55. doi: 10.1093/brain/awg077.PubMedCrossRefGoogle Scholar
  22. 22.
    Huntington Study Group. The Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 1996;11:136–42. doi: 10.1002/mds.870110204.CrossRefGoogle Scholar
  23. 23.
    Alfano B, Brunetti A, Covelli EM, Quarantelli M, Panico MR, Ciarmiello A, et al. Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach. Magn Reson Med 1997;37:84–93. doi: 10.1002/mrm.1910370113.PubMedCrossRefGoogle Scholar
  24. 24.
    Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 2004;45:192–201.PubMedGoogle Scholar
  25. 25.
    Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83.PubMedGoogle Scholar
  26. 26.
    Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904–11.PubMedGoogle Scholar
  27. 27.
    Research Imaging Center, University of Texas Health Science Center at San Antonio. Talairach Daemon Client download. Accessed 26 Feb 2009.
  28. 28.
    Landwehrmeyer GB, Dubois B, de Yébenes JG, Kremer B, Gaus W, Kraus PH, et al. Riluzole in Huntington’s disease: A 3-year, randomized controlled study. Ann Neurol 2007;62:262–72. doi: 10.1002/ana.21181.PubMedCrossRefGoogle Scholar
  29. 29.
    Giehl KM, Schütte A, Mestres P, Yan Q. The survival-promoting effect of glial cell line-derived neurotrophic factor on axotomized corticospinal neurons in vivo is mediated by an endogenous brain-derived neurotrophic factor mechanism. J Neurosci 1998;18:7351–60.PubMedGoogle Scholar
  30. 30.
    Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 1998;18:9822–34.PubMedGoogle Scholar
  31. 31.
    Paradiso S, Turner BM, Paulsen JS, Jorge R, Ponto LL, Robinson RG. Neural bases of dysphoria in early Huntington’s disease. Psychiatry Res 2008;162:73–87. doi: 10.1016/j.pscychresns.2007.04.001.PubMedCrossRefGoogle Scholar
  32. 32.
    Lehto SM, Kuikka J, Tolmunen T, Valkonen-Korhonen M, Joensuu M, Saarinen PI, et al. Temporal cortex dopamine D2/3 receptor binding in major depression. Psychiatry Clin Neurosci 2008;62:345–8. doi: 10.1111/j.1440-1819.2008.01814.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Squitieri F, Cannella M, Frati L. Molecular medicine: predicting and preventing Huntington’s disease. Neurol Sci 2008;29:205–7. doi: 10.1007/s10072-008-0969-3.PubMedCrossRefGoogle Scholar
  34. 34.
    Squitieri F, Cannella M, Simonelli M, Sassone J, Martino T, Venditti E, et al. Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neurosci Ther 2009;15:1–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ferdinando Squitieri
    • 1
  • Sara Orobello
    • 1
  • Milena Cannella
    • 1
  • Tiziana Martino
    • 1
  • Pantaleo Romanelli
    • 2
  • Giampiero Giovacchini
    • 3
  • Luigi Frati
    • 4
  • Luigi Mansi
    • 5
  • Andrea Ciarmiello
    • 3
  1. 1.Neurogenetics Unit & Centre for Rare DiseaseIRCCS NeuromedPozzilliItaly
  2. 2.Department of NeurosurgeryIRCCS NeuromedPozzilliItaly
  3. 3.Unit of Nuclear MedicineS. Andrea HospitalLa SpeziaItaly
  4. 4.Department of Experimental MedicineUniversity “Sapienza”RomeItaly
  5. 5.Department of Nuclear MedicineSecond University of NaplesNaplesItaly

Personalised recommendations