18F-FDG PET, genotype-corrected ACE and sIL-2R in newly diagnosed sarcoidosis

  • Ruth G. Keijsers
  • Fred J. Verzijlbergen
  • Wim J. Oyen
  • Jules M. van den Bosch
  • Henk J. Ruven
  • Heleen van Velzen-Blad
  • Jan C. Grutters
Original Article



Angiotensin-converting enzyme (ACE) and soluble interleukin-2 receptor (sIL-2R) are serological markers, widely used for determining sarcoidosis activity. 18F-FDG PET has proven to be a sensitive technique in the imaging of sarcoidosis. The aim of this study was to determine sensitivity of 18F-FDG PET, genotype-corrected ACE and sIL-2R in active sarcoidosis as well as their correlation.


This retrospective study included 36 newly diagnosed, symptomatic sarcoidosis patients. ACE and sIL-2R levels were simultaneously obtained within 4 weeks of 18F-FDG PET. ACE was corrected for genotype and expressed as Z-score. 18F-FDG PET was visually evaluated and scored as positive or negative. Maximum and average standardized uptake values (SUVmax and SUVavg) were compared with ACE and sIL-2R.


18F-FDG PET was found positive in 34 of 36 patients (94%). Thirteen patients (36%) showed an increased ACE with the highest sensitivity found in patients with the I/I genotype (67%). Seventeen patients (47%) showed an increased sIL-2R. No correlation was found between SUV and ACE or sIL-2R. Increased ACE and sIL-2R correlated with a positive 18F-FDG PET in 12 patients (92%) and 16 patients (94%), respectively.


18F-FDG PET is a very sensitive technique to assess active sarcoidosis, in contrast with ACE and sIL-2R, suggesting a pivotal role for 18F-FDG PET in future sarcoidosis assessment.


18F-FDG PET Angiotensin-converting enzyme Soluble interleukin-2 receptor Sarcoidosis 


  1. 1.
    Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007;357:2153–65. doi: 10.1056/NEJMra071714.PubMedCrossRefGoogle Scholar
  2. 2.
    Baughman RP, Lower EE, du Bois RM. Sarcoidosis. Lancet 2003;361:1111–8. doi: 10.1016/S0140–6736(03)12888–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Gilbert S, Steinbrech DS, Landas SK, Hunninghake GW. Amounts of angiotensin-converting enzyme mRNA reflect the burden of granulomas in granulomatous lung disease. Am Rev Respir Dis 1993;148:483–6.PubMedGoogle Scholar
  4. 4.
    Rubin LA, Kurman CC, Fritz ME, Biddison WE, Boutin B, Yarchoan R, et al. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol 1985;135:3172–7.PubMedGoogle Scholar
  5. 5.
    Silverstein E, Friedland J, Lyons HA, Gourin A. Elevation of angiotensin-converting enzyme in granulomatous lymph nodes and serum in sarcoidosis: clinical and possible pathogenic significance. Ann N Y Acad Sci 1976;278:498–513. doi: 10.1111/j.1749–6632.1976.tb47062.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Studdy PR, Lapworth R, Bird R. Angiotensin-converting enzyme and its clinical significance–a review. J Clin Pathol 1983;36:938–47. doi: 10.1136/jcp.36.8.938.PubMedCrossRefGoogle Scholar
  7. 7.
    Bunting PS, Szalai JP, Katic M. Diagnostic aspects of angiotensin converting enzyme in pulmonary sarcoidosis. Clin Biochem 1987;20:213–9. doi: 10.1016/S0009–9120(87)80123–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Klech H, Kohn H, Kummer F, Mostbeck A. Assessment of activity in sarcoidosis. Sensitivity and specificity of 67gallium scintigraphy, serum ACE levels, chest roentgenography, and blood lymphocyte subpopulations. Chest 1982;82:732–8. doi: 10.1378/chest.82.6.732.PubMedCrossRefGoogle Scholar
  9. 9.
    Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–6. doi: 10.1172/JCI114844.PubMedCrossRefGoogle Scholar
  10. 10.
    Arbustini E, Grasso M, Leo G, Tinelli C, Fasani R, Diegoli M, et al. Polymorphism of angiotensin-converting enzyme gene in sarcoidosis. Am J Respir Crit Care Med 1996;153:851–4.PubMedGoogle Scholar
  11. 11.
    Sharma P, Smith I, Maguire G, Stewart S, Shneerson J, Brown MJ. Clinical value of ACE genotyping in diagnosis of sarcoidosis. Lancet 1997;349:1602–3. doi: 10.1016/S0140–6736(05)61631–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Stokes GS, Monaghan JC, Schrader AP, Glenn CL, Ryan M, Morris BJ. Influence of angiotensin converting enzyme (ACE) genotype on interpretation of diagnostic tests for serum ACE activity. Aust N Z J Med 1999;29:315–8.PubMedGoogle Scholar
  13. 13.
    Tomita H, Ina Y, Sugiura Y, Sato S, Kawaguchi H, Morishita M, et al. Polymorphism in the angiotensin-converting enzyme (ACE) gene and sarcoidosis. Am J Respir Crit Care Med 1997;156:255–9.PubMedGoogle Scholar
  14. 14.
    Müller-Quernheim J. Serum markers for the staging of disease activity of sarcoidosis and other interstitial lung diseases of unknown etiology. Sarcoidosis Vasc Diffuse Lung Dis 1998;15:22–37.PubMedGoogle Scholar
  15. 15.
    Rothkrantz-Kos S, van Dieijen-Visser MP, Mulder PG, Drent M. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem 2003;49:1510–7. doi: 10.1373/49.9.1510.PubMedCrossRefGoogle Scholar
  16. 16.
    Grutters JC, Fellrath JM, Mulder L, Janssen R, van den Bosch JM, van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest 2003;124:186–95. doi: 10.1378/chest.124.1.186.PubMedCrossRefGoogle Scholar
  17. 17.
    Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med 1999;160:736–55.Google Scholar
  18. 18.
    Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008;35:2320–33. doi: 10.1007/s00259–008–0874–2.PubMedCrossRefGoogle Scholar
  19. 19.
    Hurst PL, Lovell-Smith CJ. Optimized assay for serum angiotensin-converting enzyme activity. Clin Chem 1981;27:2048–52.PubMedGoogle Scholar
  20. 20.
    Neels HM, Scharpé SL, van Sande ME, Verkerk RM, Van Acker KJ. Improved micromethod for assay of serum angiotensin converting enzyme. Clin Chem 1982;28:1352–5.PubMedGoogle Scholar
  21. 21.
    Kruit A, Grutters JC, Gerritsen WB, Kos S, Wodzig WK, van den Bosch JM, et al. ACE I/D-corrected Z-scores to identify normal and elevated ACE activity in sarcoidosis. Respir Med 2007;101:510–5. doi: 10.1016/j.rmed.2006.06.025.PubMedCrossRefGoogle Scholar
  22. 22.
    Crabtree JE, Juby LD, Heatley RV, Lobo AJ, Bullimore DW, Axon AT. Soluble interleukin-2 receptor in Crohn’s disease: relation of serum concentrations to disease activity. Gut 1990;31:1033–6. doi: 10.1136/gut.31.9.1033.PubMedCrossRefGoogle Scholar
  23. 23.
    Zerler B. The soluble interleukin-2 receptor as a marker for human neoplasia and immune status. Cancer Cells 1991;3:471–9.PubMedGoogle Scholar
  24. 24.
    Braun JJ, Kessler R, Constantinesco A, Imperiale A. (18)F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging 2008;35:1537–43. doi: 10.1007/s00259–008–0770–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamada Y, Uchida Y, Tatsumi K, Yamaguchi T, Kimura H, Kitahara H, et al. Fluorine-18-fluorodeoxyglucose and carbon-11-methionine evaluation of lymphadenopathy in sarcoidosis. J Nucl Med 1998;39:1160–6.PubMedGoogle Scholar
  26. 26.
    Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, et al. Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med 2006;47:1571–6.PubMedGoogle Scholar
  27. 27.
    Bons JA, Drent M, Bouwman FG, Mariman EC, van Dieijen-Visser MP, Wodzig WK. Potential biomarkers for diagnosis of sarcoidosis using proteomics in serum. Respir Med 2007;101:1687–95. doi: 10.1016/j.rmed.2007.03.002.PubMedCrossRefGoogle Scholar
  28. 28.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–80.PubMedGoogle Scholar
  29. 29.
    Müller-Quernheim J. Sarcoidosis: immunopathogenetic concepts and their clinical application. Eur Respir J 1998;12:716–38. doi: 10.1183/09031936.98.12030716.PubMedCrossRefGoogle Scholar
  30. 30.
    Ainslie GM, Benatar SR. Serum angiotensin converting enzyme in sarcoidosis: sensitivity and specificity in diagnosis: correlations with disease activity, duration, extra-thoracic involvement, radiographic type and therapy. Q J Med 1985;55:253–70.PubMedGoogle Scholar
  31. 31.
    Ina Y, Takada K, Sato T, Yamamoto M, Noda M, Morishita M. Soluble interleukin 2 receptors in patients with sarcoidosis. Possible origin. Chest 1992;102:1128–33. doi: 10.1378/chest.102.4.1128.PubMedCrossRefGoogle Scholar
  32. 32.
    Keicho N, Kitamura K, Takaku F, Yotsumoto H. Serum concentration of soluble interleukin-2 receptor as a sensitive parameter of disease activity in sarcoidosis. Chest 1990;98:1125–9. doi: 10.1378/chest.98.5.1125.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ruth G. Keijsers
    • 1
  • Fred J. Verzijlbergen
    • 1
  • Wim J. Oyen
    • 2
  • Jules M. van den Bosch
    • 3
  • Henk J. Ruven
    • 4
  • Heleen van Velzen-Blad
    • 5
  • Jan C. Grutters
    • 3
  1. 1.Department of Nuclear MedicineSt. Antonius Hospital NieuwegeinNieuwegeinThe Netherlands
  2. 2.Department of Nuclear MedicineRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  3. 3.Department of PulmonologySt. Antonius Hospital NieuwegeinNieuwegeinThe Netherlands
  4. 4.Department of Clinical ChemistrySt. Antonius Hospital NieuwegeinNieuwegeinThe Netherlands
  5. 5.Department of Medical Microbiology and ImmunologySt. Antonius Hospital NieuwegeinNieuwegeinThe Netherlands

Personalised recommendations