Advertisement

Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy

  • Cristina Müller
  • Thomas L. Mindt
  • Marion de Jong
  • Roger Schibli
Original Article

Abstract

Purpose

Folate-based radiopharmaceuticals have the potential to be used for imaging and therapy of tumours positive for the folate receptor (FR). We describe the in vitro and in vivo evaluation of a DOTA–folate conjugate.

Methods

Radiolabelling of the DOTA-folate was carried out via standard procedures using 111InCl3 and 177LuCl3, respectively. The distribution coefficient (log D) was determined in octanol/PBS (pH 7.4). Tissue distribution was investigated in nude mice bearing KB tumour xenografts at different time points after administration of 111In-DOTA-folate (radiofolate 1) or 177Lu-DOTA-folate (radiofolate 2) (1 MBq, 1 nmol per mouse). Pemetrexed (PMX, 400 μg) was injected 1 h prior to the radiofolate in order to reduce renal uptake. Images were acquired with a SPECT/CT camera 24 h after injection of the radiofolate (40–50 MBq, 3 nmol per mouse).

Results

The hydrophilic character of the DOTA-folate was represented by a low log D value (radiofolate 1 −4.21±0.11). In vivo, maximal tumour uptake was found 4 h after injection (radiofolate 1 5.80±0.55% ID/g; radiofolate 2 7.51±1.25% ID/g). In FR-positive kidneys there was considerable accumulation of the radiofolates (radiofolate 1 55.88±3.91% ID/g; radiofolate 2 57.22±11.05% ID/g; 4 h after injection). However, renal uptake was reduced by preinjection of PMX (radiofolate 1 9.52±1.07% ID/g; radiofolate 2 13.43±0.54% ID/g; 4 h after injection) whereas the tumour uptake was retained (radiofolate 1 6.32±0.41% ID/g; radiofolate 2 8.99±0.43% ID/g; 4 h after injection). SPECT/CT images clearly confirmed favourable tissue distribution of the novel radiofolates and the positive effect of PMX.

Conclusion

The preliminary requirements for the therapeutic use of the novel DOTA-folate are met by its favourable tissue distribution that can be ascribed to its hydrophilic properties and combined administration with PMX.

Keywords

DOTA-folate Pemetrexed Folate receptor SPECT/CT 177Lu 

Notes

Acknowledgments

We thank Dr. Christian Lackas and Dr. Nils Schramm for support with the NanoSPECT/CT (Bioscan).

References

  1. 1.
    Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–401.PubMedGoogle Scholar
  2. 2.
    Garin-Chesa P, Campbell I, Saigo PE, et al. Trophoblast and ovarian cancer antigen LK26 – sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 1993;142:557–67.PubMedGoogle Scholar
  3. 3.
    Toffoli G, Cernigoi C, Russo A, et al. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997;74:193–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Parker N, Turk MJ, Westrick E, et al. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005;338:284–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev 2004;56:1205–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Guo WJ, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 1999;40:1563–9.PubMedGoogle Scholar
  7. 7.
    Mathias CJ, Hubers D, Low PS, Green MA. Synthesis of [99mTc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjug Chem 2000;11:253–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Leamon CP, Parker MA, Vlahov IR, et al. Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 2002;13:1200–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP. Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 2004;45:857–66.PubMedGoogle Scholar
  10. 10.
    Müller C, Hohn A, Schubiger PA, Schibli R. Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 2006;33:1007–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Müller C, Schubiger PA, Schibli R. Synthesis and in vitro/in vivo evaluation of novel 99mTc(CO)3-folates. Bioconjug Chem 2006;17:797–806.PubMedCrossRefGoogle Scholar
  12. 12.
    Siegel BA, Dehdashti F, Mutch DG, et al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 2003;44:700–7.PubMedGoogle Scholar
  13. 13.
    Mathias CJ, Wang S, Low PS, Waters DJ, Green MA. Receptor-mediated targeting of 67Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol 1999;26:23–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Mathias CJ, Lewis MR, Reichert DE, et al. Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 2003;30:725–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Bettio A, Honer M, Müller C, et al. Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 2006;47:1153–60.PubMedGoogle Scholar
  16. 16.
    Ke CY, Mathias CJ, Green MA. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 2003;30:811–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Ke CY, Mathias CJ, Green MA. Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 2004;56:1143–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004;56:1127–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 2004;56:1177–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao XBB, Lee RJ. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliv Rev 2004;56:1193–204.PubMedCrossRefGoogle Scholar
  21. 21.
    Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release 2003;91:17–29.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu YJ, Sega E, Leamon CP, Low PS. Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv Drug Deliv Rev 2004;56:1161–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Leamon CP, Reddy JA, Vlahov IR, et al. Synthesis and biological evaluation of EC72: a new folate-targeted chemotherapeutic. Bioconjug Chem 2005;16:803–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Reddy JA, Westrick E, Santhapuram HK, et al. Folate receptor-specific antitumor activity of EC131, a folate-maytansinoid conjugate. Cancer Res 2007;67:6376–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Leamon CP, Reddy JA, Vlahov IR, et al. Synthesis and biological evaluation of EC140: a novel folate-targeted vinca alkaloid conjugate. Bioconjug Chem 2006;17:1226–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 2007;67:4434–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Mathias CJ, Wang S, Waters DJ, et al. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 1998;39:1579–85.PubMedGoogle Scholar
  28. 28.
    Goresky CA, Watanabe H, Johns DG. The renal excretion of folic acid. J Clin Invest 1963;42:1841–9PubMedCrossRefGoogle Scholar
  29. 29.
    Holm J, Hansen SI, Hoiermadsen M, Bostad L. A high-affinity folate binding-protein in proximal tubule cells of human kidney. Kidney Int 1992;41:50–5.PubMedCrossRefGoogle Scholar
  30. 30.
    McMartin KE, Morshed KM, Hazenmartin DJ, Sens DA. Folate transport and binding by cultured human proximal tubule cells. Am J Physiol 1992;263:F841–8.PubMedGoogle Scholar
  31. 31.
    Birn H, Spiegelstein O, Christensen EI, Finnell RH. Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol 2005;16:608–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Sandoval RM, Kennedy MD, Low PS, Molitoris BA. Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol 2004;287:C517–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Müller C, Brühlmeier M, Schubiger AP, Schibli R. Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. J Nucl Med 2006;47:2057–64.PubMedGoogle Scholar
  34. 34.
    Müller C, Schibli R, Krenning EP, de Jong M. Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med 2008;49:623–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Hanauske AR, Chen V, Paoletti P, Niyikiza C. Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 2001;6:363–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Paz-Ares L, Bezares S, Tabernero JM, Castellanos D, Cortes-Funes H. Review of a promising new agent – pemetrexed disodium. Cancer 2003;97:2056–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Müller C, Schubiger PA, Schibli R. Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 2007;34:595–601.PubMedCrossRefGoogle Scholar
  38. 38.
    Müller C, Schibli R, Forrer F, Krenning EP, de Jong M. Dose-dependent effects of (anti)folate preinjection on 99mTc-radiofolate uptake in tumors and kidneys. Nucl Med Biol 2007;34:603–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Kwekkeboom DJ, Bakker WH, Kooij PP, et al. [177Lu-DOTA0Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 2001;28:1319–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0Tyr3]octreotate. J Clin Oncol 2004;22:2724–9.PubMedCrossRefGoogle Scholar
  41. 41.
    van Essen M, Krenning EP, Kooij PP, et al. Effects of therapy with [177Lu-DOTA0Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. J Nucl Med 2006;47:1599–606.PubMedGoogle Scholar
  42. 42.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 2001;40:2004–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today 2003;8:1128–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Knör S, Modlinger A, Poethko T, et al. Synthesis of novel 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) derivatives for chemoselective attachment to unprotected polyfunctionalized compounds. Chemistry 2007;13:6082–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Dijkgraaf I, Rijnders AY, Soede A, et al. Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 2007;5:935–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Mindt TL, Muller C, Melis M, de Jong M, Schibli R. “Click-to-chelate”: in vitro and in vivo comparison of a 99mTc(CO)3-labeled Nt-histidine folate derivative with its isostructural, clicked 1,2,3-triazole analogue. Bioconjug Chem 2008;19:1689–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Rennen HJJM, van Eerd JE, Oyen WJG, et al. Effects of coligand variation on the in vivo characteristics of Tc-99m-labeled interleukin-8 in detection of infection. Bioconjug Chem 2002;13:370–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Dixon KH, Mulligan T, Chung KN, Elwood PC, Cowan KH. Effects of folate receptor expression following stable transfection into wild type and methotrexate transport-deficient ZR-75-1 human breast cancer cells. J Biol Chem 1992;267:24140–7.PubMedGoogle Scholar
  49. 49.
    Ladino CA, Chari RVJ, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer 1997;73:859–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Mathias CJ, Wang S, Lee RJ, et al. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 1996;37:1003–8.PubMedGoogle Scholar
  51. 51.
    Forrer F, Valkema R, Bernard B, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging 2006;33:1214–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Müller C, Forrer F, Schibli R, Krenning EP, de Jong M. SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med 2008;49:310–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Hammond PJ, Wade AF, Gwilliam ME, et al. Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue. Br J Cancer 1993;67:1437–9.PubMedGoogle Scholar
  54. 54.
    Akizawa H, Uehara T, Arano Y. Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins. Adv Drug Deliv Rev 2008;60:1319–28.PubMedCrossRefGoogle Scholar
  55. 55.
    Müller C, Forrer F, Bernard BF, et al. Diagnostic versus therapeutic doses of [177Lu-DOTA0Tyr3]-octreotate: uptake and dosimetry in somatostatin receptor-positive tumors and normal organs. Cancer Biother Radiopharm 2007;22:151–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Cristina Müller
    • 1
    • 2
  • Thomas L. Mindt
    • 3
  • Marion de Jong
    • 2
  • Roger Schibli
    • 1
    • 3
  1. 1.Center for Radiopharmaceutical Science ETH-PSI-USZPaul Scherrer InstituteVilligen PSISwitzerland
  2. 2.Department of Nuclear MedicineErasmus MCRotterdamThe Netherlands
  3. 3.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations