Advertisement

Near-infrared optical imaging in glioblastoma xenograft with ligand-targeting α3 integrin

  • Wenwu Xiao
  • Nianhuan Yao
  • Li Peng
  • Ruiwu Liu
  • Kit S. LamEmail author
Original Article

Abstract

Purpose

Patients with glioblastoma usually have a very poor prognosis. Even with a combination of radiotherapy plus temozolomide, the median survival of these patients is only 14.6 months. New treatment approaches to this cancer are needed. Our purpose is to develop new cell surface-binding ligands for glioblastoma cells and use them as targeted imaging and therapeutic agents for this deadly disease.

Methods

One-bead one-compound combinatorial cyclic peptide libraries were screened with live human glioblastoma U-87MG cells. The binding affinity and targeting specificity of peptides identified were tested with in vitro experiments on cells and in vivo and ex vivo experiments on U-87MG xenograft mouse model.

Results

A cyclic peptide, LXY1, was identified and shown to be binding to the α3 integrin of U-87MG cells with moderately high affinity (K d = 0.5 ± 0.1 μM) and high specificity. Biotinylated LXY1, when complexed with streptavidin–Cy5.5 (SA–Cy5.5) conjugate, targeted both subcutaneous and orthotopic U-87MG xenograft implants in nude mice. The in vivo targeting specificity was further verified by strong inhibition of tumor uptake of LXY1–biotin–SA–Cy5.5 complex when intravenously injecting the animals with anti-α3 integrin antibody or excess unlabeled LXY1 prior to administrating the imaging probe. The smaller univalent LXY1–Cy5.5 conjugate (2,279 Da) was found to have a faster accumulation in the U-87MG tumor and shorter retention time compared with the larger tetravalent LXY1–biotin–SA–Cy5.5 complex (approximately 64 kDa).

Conclusions

Collectively, the data reveals that LXY1 has the potential to be developed into an effective imaging and therapeutic targeting agent for human glioblastoma.

Keywords

Combinatorial chemistry One-bead one-compound peptide library Integrin Cancer targeting Glioblastoma Optical imaging Molecular imaging Small animal imaging 

Abbreviations

c

d-cysteine

B

l-hydroxyl-proline

X

random amino acids

Hci

homocitrulline

HOBt

1-hydroxybenzotriazole

DIC

1,3-diisopropylcarbodiimide

TFA

trifluoroacetic acid

TIS

triisopropylsilane

EDTA

ethylenediaminetetraacetic acid

PE

phycoerythrin

DAPI

4′,6-diamidino-2-phenylindole

IACUC

Institutional Animal Care and Use Committee

FBS

fetal bovine serum

PBS

phosphate-buffered saline

Notes

Acknowledgments

This work was supported by the National Institutes of Health (R33CA-86364, R33CA-99136, U19CA113298, and P50CA097257). We would like to thank Ms. Mary Saunders and Mr. Joel Kugelmass for the editorial assistance.

Conflict of interest

There is no conflict of interest for this manuscript.

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Hynes RO. Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants—or both? Cell 2003;113(7):821–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110(6):673–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Taga T, Suzuki A, Gonzalez-Gomez I, et al. Alpha v-integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 2002;98(5):690–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 2004;64(21):8009–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Paulus W, Baur I, Schuppan D, Roggendorf W. Characterization of integrin receptors in normal and neoplastic human brain. Am J Pathol 1993;143(1):154–63.PubMedGoogle Scholar
  7. 7.
    Aina OH, Marik J, Liu R, Lau DH, Lam KS. Identification of novel targeting peptides for human ovarian cancer cells using “one-bead one-compound” combinatorial libraries. Mol Cancer Ther 2005;4(5):806–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu G, Lam KS. One-bead one compound combinatorial library method. In: Fenniri H, editor. Combinatorial chemistry. New York: Oxford University Press; 2000. p. 33–49.Google Scholar
  9. 9.
    Song A, Wang X, Zhang J, Marik J, Lebrilla CB, Lam KS. Synthesis of hydrophilic and flexible linkers for peptide derivatization in solid phase. Bioorg Med Chem Lett 2004;14(1):161–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Volkmer-Engert R, Landgraf C, Schneider-Mergener J. Charcoal surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J Pept Res 1998;51(5):365–9.PubMedGoogle Scholar
  11. 11.
    Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991;354(6348):82–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Aina OH, Liu R, Sutcliffe JL, Marik J, Pan CX, Lam KS. From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 2007;4(5):631–51.PubMedCrossRefGoogle Scholar
  13. 13.
    DeRoock IB, Pennington ME, Sroka TC, et al. Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. Cancer Res 2001;61(8):3308–13.PubMedGoogle Scholar
  14. 14.
    Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS. Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4beta1 integrin for in vivo tumor imaging. Nat Chem Biol 2006;2(7):381–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Peng L, Liu R, Andrei M, Xiao W, Lam KS. In vivo optical imaging of human lymphoma xenograft using a library-derived peptidomimetic against alpha4beta1 integrin. Mol Cancer Ther 2008;7(2):432–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Lau D, Guo L, Liu R, Marik J, Lam K. Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer. Lung Cancer 2006;52(3):291–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Aina OH, Marik J, Gandour-Edwards R, Lam KS. Near-infrared optical imaging of ovarian cancer xenografts with novel alpha 3-integrin binding peptide “OA02”. Mol Imaging 2005;4(4):439–47.PubMedGoogle Scholar
  18. 18.
    Schmid RS, Shelton S, Stanco A, Yokota Y, Kreidberg JA, Anton ES. Alpha3 beta1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development. Development 2004;131(24):6023–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Kreidberg JA, Symons JM. Integrins in kidney development, function, and disease. Am J Physiol Renal Physiol 2000;279(2):F233–42.PubMedGoogle Scholar
  20. 20.
    Wang Z, Symons JM, Goldstein SL, McDonald A, Miner JH, Kreidberg JA. Alpha3 beta1 integrin regulates epithelial cytoskeletal organization. J Cell Sci 1999;112(Pt 17):2925–35.PubMedGoogle Scholar
  21. 21.
    DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO. Alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol 1997;137(3):729–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Morini M, Mottolese M, Ferrari N, et al. The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 2000;87(3):336–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Coopman PJ, Thomas DM, Gehlsen KR, Mueller SC. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells. Mol Biol Cell 1996;7(11):1789–804.PubMedGoogle Scholar
  24. 24.
    Van der Pluijm, Vloedgraven H, Papapoulos S, et al. Attachment characteristics and involvement of integrins in adhesion of breast cancer cell lines to extracellular bone matrix components. Lab Invest 1997;77(6):665–75.PubMedGoogle Scholar
  25. 25.
    Kiefer JA, Farach-Carson MC. Type I collagen-mediated proliferation of PC3 prostate carcinoma cell line: implications for enhanced growth in the bone microenvironment. Matrix Biol 2001;20(7):429–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilbur DS, Hamlin DK, Sanderson J, Lin Y. Streptavidin in antibody pretargeting. 4. Site-directed mutation provides evidence that both arginine and lysine residues are involved in kidney localization. Bioconjug Chem 2004;15(6):1454–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Deeken JF, Löscher W. The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007;13(6):1663–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wenwu Xiao
    • 1
  • Nianhuan Yao
    • 1
  • Li Peng
    • 1
  • Ruiwu Liu
    • 1
  • Kit S. Lam
    • 1
    Email author
  1. 1.Division of Hematology and Oncology, Department of Internal Medicine, UC Davis Cancer CenterUniversity of California DavisSacramentoUSA

Personalised recommendations