Calculation of electron dose to target cells in a complex environment by Monte Carlo code “CELLDOSE”

  • Elif Hindié
  • Christophe Champion
  • Paolo Zanotti-Fregonara
  • Domenico Rubello
  • Nicole Colas-Linhart
  • Laura Ravasi
  • Jean-Luc Moretti
Original Article



We used the Monte Carlo code “CELLDOSE” to assess the dose received by specific target cells from electron emissions in a complex environment. 131I in a simulated thyroid was used as a model.


Thyroid follicles were represented by 170 μm diameter spherical units made of a lumen of 150 μm diameter containing colloidal matter and a peripheral layer of 10 μm thick thyroid cells. Neighbouring follicles are 4 μm apart. 131I was assumed to be homogeneously distributed in the lumen and absent in cells. We firstly assessed electron dose distribution in a single follicle. Then, we expanded the simulation by progressively adding neighbouring layers of follicles, so to reassess the electron dose to this single follicle implemented with the contribution of the added layers.


Electron dose gradient around a point source showed that the 131I electron dose is close to zero after 2,100 μm. Therefore, we studied all contributions to the central follicle deriving from follicles within 12 orders of neighbourhood (15,624 follicles surrounding the central follicle). The dose to colloid of the single follicle was twice as high as the dose to thyroid cells. Even when all neighbours were taken into account, the dose in the central follicle remained heterogeneous. For a 1-Gy average dose to tissue, the dose to colloidal matter was 1.168 Gy, the dose to thyroid cells was 0.982 Gy, and the dose to the inter-follicular tissue was 0.895 Gy. Analysis of the different contributions to thyroid cell dose showed that 17.3% of the dose derived from the colloidal matter of their own follicle, while the remaining 82.7% was delivered by the surrounding follicles. On the basis of these data, it is shown that when different follicles contain different concentrations of 131I, the impact in terms of cell dose heterogeneity can be important.


By means of 131I in the thyroid as a theoretical model, we showed how a Monte Carlo code can be used to map electron dose deposit and build up the dose to target cells in a complex multi-source environment. This approach can be of considerable interest for comparing different radiopharmaceuticals as therapy agents in oncology.


Monte Carlo simulation Cell dosimetry Iodine-131 Thyroid 


  1. 1.
    Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S–61S.PubMedGoogle Scholar
  2. 2.
    Kassis AI. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005;46(Suppl 1):4S–12S. Review.PubMedGoogle Scholar
  3. 3.
    Neti PV, Howell RW. Isolating effects of microscopic nonuniform distributions of (131)I on labeled and unlabeled cells. J Nucl Med 2004;45:1050–8.PubMedGoogle Scholar
  4. 4.
    Hindorf C, Emfietzoglou D, Lindén O, Bousis C, Fotopoulos A, Kostarelos K, et al. Single-cell dosimetry for radioimmunotherapy of B-cell lymphoma patients with special reference to leukemic spread. Cancer Biother Radiopharm 2007;22:357–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Cariati M, Purushotham AD. Stem cells and breast cancer. Histopathology 2008;52:99–107. Review.PubMedGoogle Scholar
  6. 6.
    Ricci-Vitiani L, Pagliuca A, Palio E, Zeuner A, De Maria R. Colon cancer stem cells. Gut 2008;57:538–48. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Goddu SM, Howell RW, Rao DV. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 1994;35:303–16.PubMedGoogle Scholar
  8. 8.
    Goddu SM, Rao DV, Howell RW. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. J Nucl Med 1994;35:521–30.PubMedGoogle Scholar
  9. 9.
    Hartman T, Lundqvist H, Westlin JE, Carlsson J. Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with (131)I labeled ligands or antibodies. Int J Radiat Oncol Biol Phys 2000;46:1025–36.PubMedGoogle Scholar
  10. 10.
    Champion C, Zanotti-Fregonara P, Hindié E. CELLDOSE: a Monte Carlo code to assess electron dose distribution—S values for 131-I in spheres of various sizes. J Nucl Med 2008;49:151–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol 1994;39:961–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Li WB, Friedland W, Pomplun E, Jacob P, Paretzke HG, Lassmann M, et al. Track structures and dose distributions from decays of (131)I and (125)I in and around water spheres simulating micrometastases of differentiated thyroid cancer. Radiat Res 2001;156:419–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Dunn JT, Dunn AD. Update on intrathyroidal iodine metabolism. Thyroid 2001;11:407–14. Review.PubMedCrossRefGoogle Scholar
  14. 14.
    Zanzonico PB. Age-dependent thyroid absorbed doses for radiobiologically significant radioisotopes of iodine. Health Phys 2000;78:60–7.PubMedGoogle Scholar
  15. 15.
    Lowenstein JE, Wollman SH. Distribution of organic 125-I and 127-I in the rat thyroid gland during equilibrium labeling as determined by autoradiography. Endocrinology 1967;81:1074–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Hindie E, Petiet A, Bourahla K, Colas-Linhart N, Slodzian G, Dennebouy R, et al. Microscopic distribution of iodine radioisotopes in the thyroid of the iodine deficient new-born rat: insight concerning the Chernobyl accident. Cell Mol Biol (Noisy-le-grand) 2001;47:403–10.Google Scholar
  17. 17.
    Wilson JD, Foster DW. Williams textbook of endocrinology. 8th ed. Philadelphia: Saunders; 1992.Google Scholar
  18. 18.
    Champion C. Theoretical cross sections for electron collisions in water: structure of electron tracks. Phys Med Biol 2003;48(14):2147–68. Jul 21.PubMedCrossRefGoogle Scholar
  19. 19.
    Cross WG, Freedman NO, Wong PY. Beta-ray dose distributions from point sources in an infinite water medium. Health Phys 1992;63:160–71.PubMedGoogle Scholar
  20. 20.
    Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S–36S.PubMedGoogle Scholar
  21. 21.
    ICRU Report 67. Absorbed-dose specification in nuclear medicine. By ICRU, p. 110, 2002. Nuclear Technology, Ashford, UK.Google Scholar
  22. 22.
    Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005;46(Suppl 1):18S–27S. Jan, Review.PubMedGoogle Scholar
  23. 23.
    Barthe N, Chatti K, Coulon P, Maîtrejean S, Basse-Cathalinat B. Recent technologic developments on high-resolution beta imaging systems for quantitative autoradiography and double labeling applications. Nucl Instrum Methods Phys Res A 2004;527:41–5.CrossRefGoogle Scholar
  24. 24.
    Puncher MR, Blower PJ. Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography. Eur J Nucl Med 1994;21:1347–65. Review.PubMedCrossRefGoogle Scholar
  25. 25.
    Stumpf WE. Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 2005;51:25–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Chehade F, de Labriolle-Vaylet C, Moins N, Moreau MF, Papon J, Labarre P, et al. Secondary ion mass spectrometry as a tool for investigating radiopharmaceutical distribution at the cellular level: the example of I-BZA and (14)C-I-BZA. J Nucl Med 2005;46:1701–6.PubMedGoogle Scholar
  27. 27.
    Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 2006;5(6):20.PubMedCrossRefGoogle Scholar
  28. 28.
    Prestwich WV, Nunes J, Kwok CS. Beta dose point kernels for radionuclides of potential use in radioimmunotherapy. J Nucl Med 1989;30:1036–46. Erratum in: J Nucl Med 1989;30:1739–40.PubMedGoogle Scholar
  29. 29.
    Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, et al. MIRD Pamphlet No 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 2003;44:1113–47.PubMedGoogle Scholar
  30. 30.
    Clerc J, Kahn E, Fragu P. SIMS evidence that carbimazole enhances spatial heterogeneity of thyroid iodine storage and targeting in a woman with Graves’ disease. Cell Mol Biol (Noisy-le-grand) 2001;47:519–27.Google Scholar
  31. 31.
    Hindie E, Leenhardt L, Vitaux F, Colas-Linhart N, Grosclaude P, Galle P, et al. Non-medical exposure to radioiodines and thyroid cancer. Eur J Nucl Med Mol Imaging 2002;29(Suppl 2):S497–512. Review.PubMedGoogle Scholar
  32. 32.
    Ashizawa K, Shibata Y, Yamashita S, Namba H, Hoshi M, Yokoyama N, et al. Prevalence of goiter and urinary iodine excretion levels in children around Chernobyl. J Clin Endocrinol Metab 1997;82:3430–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Gembicki M, Stozharov AN, Arinchin AN, Moschik KV, Petrenko S, Khmara IM, Baverstock KF. Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect 1997;105(Suppl 6):1487–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol 2003;32:584–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 2005;97:724–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Boltze C, Brabant G, Dralle H, Gerlach R, Roessner A, Hoang-Vu C. Radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: an in vivo model of tumorigenesis in the rat. Endocrinology 2002;143:2584–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elif Hindié
    • 1
    • 2
  • Christophe Champion
    • 3
  • Paolo Zanotti-Fregonara
    • 4
  • Domenico Rubello
    • 5
  • Nicole Colas-Linhart
    • 6
  • Laura Ravasi
    • 4
  • Jean-Luc Moretti
    • 1
    • 2
  1. 1.Service de Médecine NucléaireHôpital Saint-LouisParis Cedex 10France
  2. 2.Imagerie Moléculaire Diagnostique et Ciblage Thérapeutique; Ecole Doctorale B2T; IUHUniversité Paris 7ParisFrance
  3. 3.Laboratoire de Physique Moléculaire et des Collisions, Metz Institut de PhysiqueUniversité Paul VerlaineMetz Cedex 3France
  4. 4.DSV/I2BM/SHFJ/LIMECommissariat à l’Energie AtomiqueOrsayFrance
  5. 5.Department of Nuclear Medicine—PET Centre, « S. Maria della Misericordia » HospitalInstituto Oncologico Veneto (IOV)—IRCCSRovigoItaly
  6. 6.Laboratoire de BiophysiqueFaculté de Médecine Xavier BichatParisFrance

Personalised recommendations