A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data

  • Andrea Schaefer
  • Stephanie Kremp
  • Dirk Hellwig
  • Christian Rübe
  • Carl-Martin Kirsch
  • Ursula Nestle
Original Article

Abstract

Purpose

An easily applicable algorithm for the FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer was developed by phantom measurements and validated in patient data.

Methods

PET scans were performed (ECAT-ART tomograph) on two cylindrical phantoms (phan1, phan2) containing glass spheres of different volumes (7.4–258 ml) which were filled with identical FDG concentrations. Gradually increasing the activity of the fillable background, signal-to-background ratios from 33:1 to 2.5:1 were realised. The mean standardised uptake value (SUV) of the region-of-interest (ROI) surrounded by a 70% isocontour (mSUV70) was used to represent the FDG accumulation of each sphere (or tumour). Image contrast was defined as:\(C = {{\left( {{\text{mSUV}}_{{\text{70}}} - {\text{BG}}} \right)} \mathord{\left/ {\vphantom {{\left( {{\text{mSUV}}_{{\text{70}}} - {\text{BG}}} \right)} {{\text{BG}}}}} \right. \kern-\nulldelimiterspace} {{\text{BG}}}}\) where BG is the mean background − SUV. For the spheres of phan1, the threshold SUVs (TS) best matching the known sphere volumes were determined. A regression function representing the relationship between TS/(mSUV70 − BG) and C was calculated and used for delineation of the spheres in phan2 and the gross tumour volumes (GTVs) of eight primary lung tumours. These GTVs were compared to those defined using CT.

Results

The relationship between TS/(mSUV70 − BG) and C is best described by an inverse regression function which can be converted to the linear relationship \({\text{TS}} = a \times {\text{mSUV}}_{70} + b \times {\text{BG}}\). Using this algorithm, the volumes delineated in phan2 differed by only −0.4 to +0.7 mm in radius from the true ones, whilst the PET-GTVs differed by only −0.7 to +1.2 mm compared with the values determined by CT.

Conclusion

By the contrast-oriented algorithm presented in this study, a PET-based delineation of GTVs for primary tumours of lung cancer patients is feasible.

Keywords

Volume delineation 18F-FDG PET Lung cancer GTV definition Radiotherapy Physics PET oncology therapy PET/CT 

References

  1. 1.
    Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004;48:119–42.PubMedGoogle Scholar
  2. 2.
    Mayor S. NICE issues guidance for diagnosis and treatment of lung cancer. BMJ 2005;330:439.PubMedCrossRefGoogle Scholar
  3. 3.
    Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S.PubMedGoogle Scholar
  4. 4.
    ICRU. Prescribing, recording and reporting photon beam therapy. Supplement to report 50. Bethesda, MD: ICRU; 1999.Google Scholar
  5. 5.
    Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Nestle U, Kremp S, Grosu A. Practical integration of [(18)F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Pötzsch C, Hofheinz F, van den Hoff J. Vergleich der inter-observer-variabilität bei manueller und automatischer volumenbestimmung in der PET. Nuklearmediziner 2006;45:A42.Google Scholar
  8. 8.
    Knight SB, Delbeke D, Stewart JR, Sandler MP. Evaluation of pulmonary lesions with FDG-PET. Comparison of findings in patients with and without a history of prior malignancy. Chest 1996;109:982–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Hellwig D, Graeter TP, Gröschel A, Sybrecht GW, Schäfers HJ, Kirsch CM. FDG-PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 2007;48:1761–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004;45:1519–27.PubMedGoogle Scholar
  12. 12.
    Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 2005;46:424–8.PubMedGoogle Scholar
  13. 13.
    Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 1993;34:1–6.PubMedGoogle Scholar
  14. 14.
    Menda Y, Bushnell DL, Madsen MT, McLaughlin K, Kahn D, Kernstine KH. Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Commun 2001;22:1077–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784–8.PubMedGoogle Scholar
  16. 16.
    Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW. Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 2004;45:559–66.PubMedGoogle Scholar
  17. 17.
    Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMedGoogle Scholar
  18. 18.
    Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMedGoogle Scholar
  20. 20.
    Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Geets X, Daisne JF, Tomsej M, Duprez T, Lonneux M, Gregoire V. Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 2006;78:291–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Bayne M, MacManus M, Hicks R, Leong T, Peters L, Ball D. Can a mathematical formula help define a radiation target volume using positron emission tomography? In regard to Black et al. (Int J Radiat Oncol Biol Phys 2004;60:1272–1282). Int J Radiat Oncol Biol Phys 2005;62:299–300. author reply 300.PubMedCrossRefGoogle Scholar
  24. 24.
    Kremp S, Nestle U, Sebastian-Welsch C, Schaefer A, Kirsch CM, Rübe C. Möglicher Nutzen der FDG-PET zur Abbildung der Tumorbewegung in der 3-D Bestrahlungsplanung von Bronchialkarzinomen mittels CT-PET fusionierter Bildgebung. Strahlenther Onkol 2006;182:51.Google Scholar
  25. 25.
    Kremp S, Schaefer-Schuler A, Nestle U, Sebastian-Welsch C, Rübe C, Kirsch C-M. Comparison of CT and CT-PET-fusion based 3D treatment plans in the percutaneous radiotherapy of lung cancer. Radiother Oncol 2004;73:S447–8.Google Scholar
  26. 26.
    Nestle U, Hellwig D, Schmidt S, Licht N, Walter K, Ukena D, et al. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol 2002;4:257–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Nestle U, Hellwig D, Fleckenstein J, Walter K, Ukena D, Rübe C, et al. Comparison of early pulmonary changes in 18FDG-PET and CT after combined radiochemotherapy for advanced non-small-cell lung cancer: a study in 15 patients. Front Radiat Ther Oncol 2002;37:26–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24:6–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Watson C, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole body PET. IEEE Trans Nucl Sci 1999;46:1024–31.CrossRefGoogle Scholar
  31. 31.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994;13:601–9.CrossRefGoogle Scholar
  32. 32.
    Kremp S, Hellwig D, Schaefer-Schuler A, Sebastian-Welsch C, Ukena D, Rübe C. Integration von CT/PET fusionierter Bildgebung in die 3-D-Bestrahlungsplanung des Bronchialkarzinoms. Strahlenther Onkol 2003;179:6. abstract.Google Scholar
  33. 33.
    Borst GR, Belderbos JS, Boellaard R, Comans EF, Jaeger KD, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer 2005;41:1533–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Townsend DW, Wensveen M, Byars LG, Geissbuhler A, Tochon-Danguy HJ, Christin A, et al. A rotating PET scanner using BGO block detectors: design, performance and applications. J Nucl Med 1993;34:1367–76.PubMedGoogle Scholar
  35. 35.
    Kadrmas DJ, Christian PE. Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. J Nucl Med 2002;43:1545–54.PubMedGoogle Scholar
  36. 36.
    Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMedGoogle Scholar
  37. 37.
    Vesselle H, Pugsley JM, Vallieres E, Wood DE. The impact of fluorodeoxyglucose F 18 positron-emission tomography on the surgical staging of non-small cell lung cancer. J Thorac Cardiovasc Surg 2002;124:511–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, et al. Target volume definition for (18)F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34:453–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMedGoogle Scholar
  40. 40.
    Ciernik IF, Huser M, Burger C, Davis JB, Szekely G. Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 2005;62:893–900.PubMedGoogle Scholar
  41. 41.
    Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002;29:366–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Jin JY, Ajlouni M, Chen Q, Yin FF, Movsas B. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother Oncol 2006;78:177–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch C-M, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys. 2008; doi:10.1016/j.ijrobp.2008.03.063.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea Schaefer
    • 1
  • Stephanie Kremp
    • 2
  • Dirk Hellwig
    • 1
  • Christian Rübe
    • 2
  • Carl-Martin Kirsch
    • 1
  • Ursula Nestle
    • 1
  1. 1.Department of Nuclear MedicineSaarland University Medical CenterHomburgGermany
  2. 2.Department of RadiotherapySaarland University Medical CenterHomburgGermany

Personalised recommendations