Planar and SPECT imaging in the era of PET and PET–CT: can it survive the test of time?




This work was supported in part by the International Union against Cancer (UICC), Geneva, Switzerland, under the ACSBI fellowship.


  1. 1.
    Bigott HM, Laforest R, Liu X, Ruangma A, Wuest F, Welch MJ. Advances in the production, processing and microPET image quality of technetium-94m. Nucl Med Biol 2006;33 7:923–33. Oct.PubMedCrossRefGoogle Scholar
  2. 2.
    Clark J, Christian BT, Nickles RJ, Stone CK, Mulnix TL. Improving the radionuclidic purity of 94mTc for PET imaging. Appl Radiat Isotopes 1995;46 2:69–73(5). February.CrossRefGoogle Scholar
  3. 3.
    Stone CK, Christian BT, Nickles RJ, Perlman SB. Technetium 94m-labeled methoxyisobutyl isonitrile: dosimetry and resting cardiac imaging with positron emission tomography. J Nucl Cardiol 1994;1 5 Pt 1:425–33. Sep–Oct.PubMedGoogle Scholar
  4. 4.
    Nickles RJ, Nunn AD, Stone CK, Christian BT. Technetium-94m-teboroxime: synthesis, dosimetry and initial PET imaging studies. J Nucl Med 1993;34 7:1058–66. Jul.PubMedGoogle Scholar
  5. 5.
    Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999;40 10:1623–9. Oct.PubMedGoogle Scholar
  6. 6.
    Lambrecht RM, Woodhouse N, Phillips R, Wolczak D, Qureshi A, Reyes ED, et al. Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging 1988;3 4:197–200.PubMedGoogle Scholar
  7. 7.
    Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996;37 9:1557–62. Sep.PubMedGoogle Scholar
  8. 8.
    Frey P, Townsend D, Jeavons A, Donath A. In vivo imaging of the human thyroid with a positron camera using 124I. Eur J Nucl Med 1985;10 9–10:472–6.PubMedGoogle Scholar
  9. 9.
    Crawford DC, Flower MA, Pratt BE, Hill C, Zweit J, McCready VR, et al. Thyroid volume measurement in thyrotoxic patients: comparison between ultrasonography and iodine-124 positron emission tomography. Eur J Nucl Med 1997;24 12:1470–8. Dec.PubMedCrossRefGoogle Scholar
  10. 10.
    Eschmann SM, Reischl G, Bilger K, Kupferschlager J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002;29 6:760–7. Jun.PubMedCrossRefGoogle Scholar
  11. 11.
    Ott RJ, Batty V, Webb BS, Flower MA, Leach MO, Clack R, et al. Measurement of radiation dose to the thyroid using positron emission tomography. Br J Radiol 1987;60 711:245–51. Mar.PubMedGoogle Scholar
  12. 12.
    Erdi YE, Macapinlac H, Larson SM, Erdi AK, Yeung H, Furhang EE, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 1999;2 1:41–6. Jan.PubMedCrossRefGoogle Scholar
  13. 13.
    Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Gorges R, et al. Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004;14 11:2092–8. Nov.PubMedCrossRefGoogle Scholar
  14. 14.
    Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45 8:1366–72. Aug.PubMedGoogle Scholar
  15. 15.
    Larson SM, Robbins R. Positron emission tomography in thyroid cancer management. Semin Roentgenol. 2002;37 2:169–74. Review. Apr.PubMedCrossRefGoogle Scholar
  16. 16.
    Bakir MA, Eccles S, Babich JW, Aftab N, Styles J, Dean CJ, et al. c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 1992;33 12:2154–60. Dec.PubMedGoogle Scholar
  17. 17.
    Larson SM, Pentlow KS, Volkow ND, Wolf AP, Finn RD, Lambrecht RM, et al. PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 1992;33 11:2020–3. Nov.PubMedGoogle Scholar
  18. 18.
    Daghighian F, Pentlow KS, Larson SM, Graham MC, DiResta GR, Yeh SD, et al. Development of a method to measure kinetics of radiolabelled monoclonal antibody in human tumour with applications to microdosimetry: positron emission tomography studies of iodine-124 labelled 3F8 monoclonal antibody in glioma. Eur J Nucl Med 1993;20 5:402–9. May.PubMedCrossRefGoogle Scholar
  19. 19.
    Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43 8:1072–83. Aug.PubMedGoogle Scholar
  20. 20.
    Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44 12:1962–9. Dec.PubMedGoogle Scholar
  21. 21.
    Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65 4:1471–8. Feb 15.PubMedCrossRefGoogle Scholar
  22. 22.
    Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, et al. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 2005;32 4:395–402. May.PubMedCrossRefGoogle Scholar
  23. 23.
    Kairemo KJ. Positron emission tomography of monoclonal antibodies. Acta Oncol 1993;32 7–8:825–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Guenther I, Wyer L, Knust EJ, Finn RD, Koziorowski J, Weinreich R. Radiosynthesis and quality assurance of 5-[124I]Iodo-2¢-deoxyuridine for functional PET imaging of cell proliferation. Nucl Med Biol 1998;25 4:359–65. May.PubMedCrossRefGoogle Scholar
  25. 25.
    Trampal C, Engler H, Juhlin C, Bergstrom M, Langstrom B. Pheochromocytomas: detection with 11C hydroxyephedrine PET. Radiology 2004;230 2:423–8. Feb.PubMedCrossRefGoogle Scholar
  26. 26.
    Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE, et al. [11C]Metahydroxyephedrine and [18F]fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected pheochromocytoma. Ann Surg Oncol 2006;13 2:187–97. Feb.PubMedCrossRefGoogle Scholar
  27. 27.
    Franzius C, Hermann K, Weckesser M, Kopka K, Juergens KU, Vormoor J, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med 2006;47 10:1635–42. Oct.PubMedGoogle Scholar
  28. 28.
    Hoegerle S, Nitzsche E, Altehoefer C, et al. Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 2002;222:507–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Pacak K, Eisenhofer G, Carrasquillo JA, Chen CC, Li ST, Goldstein DS. 6-[18F] fluorodopamine positron emission tomography (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension 2001;38:6–8.PubMedGoogle Scholar
  30. 30.
    Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001;220 2:373–80. Aug.PubMedGoogle Scholar
  31. 31.
    Pietila M, Malminiemi K, Ukkonen H, Saraste M, Nagren K, Lehikoinen P, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28 3:373–6. Mar.PubMedCrossRefGoogle Scholar
  32. 32.
    Nomura Y, Matsunari I, Takamatsu H, Murakami Y, Matsuya T, Taki J, et al. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake. Eur J Nucl Med Mol Imaging 2006;33 8:871–8. Aug.PubMedCrossRefGoogle Scholar
  33. 33.
    Raffel DM, Chen W, Sherman PS, Gildersleeve DL, Jung YW. Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med 2006;47 9:1490–6. Sep.PubMedGoogle Scholar
  34. 34.
    Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol 1992;65 777:787–91. Sep.PubMedGoogle Scholar
  35. 35.
    Shapiro B. Ten years of experience with MIBG applications and the potential of new radiolabeled peptides: a personal overview and concluding remarks. Q J Nucl Med. 1995;39 4 Suppl 1:150–5. Dec.PubMedGoogle Scholar
  36. 36.
    Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitsas N, et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33 4:460–6. Apr.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide—a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 1994;35 2:317–25. Feb.PubMedGoogle Scholar
  38. 38.
    Stolz B, Smith-Jones PM, Albert R, Reist H, Macke H, Bruns C. Biological characterisation of [67Ga] or [68Ga] labelled DFO-octreotide (SDZ 216-927) for PET studies of somatostatin receptor positive tumors. Horm Metab Res 1994;26 10:453–9. Oct.PubMedGoogle Scholar
  39. 39.
    Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68GA] DOTA-d-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 2001;42 7:1053–6. Jul.PubMedGoogle Scholar
  40. 40.
    Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-d Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 2003;5 1:42–8. Jan–Feb.PubMedCrossRefGoogle Scholar
  41. 41.
    Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, et al. 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 2006;176 3:954–60. Sep.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005;32 7:742–8. Jul.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74 3:214–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Breeuwsma AJ, Pruim J, Jongen MM, Suurmeijer AJ, Vaalburg W, Nijman RJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 2005;32 6:668–73. Jun.PubMedCrossRefGoogle Scholar
  45. 45.
    Fazio F, Picchio M, Messa C. Is 11C-choline the most appropriate tracer for prostate cancer? For Eur J Nucl Med Mol Imaging 2004;31 5:753–6. May.CrossRefGoogle Scholar
  46. 46.
    de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44 1:32–8. Jul.PubMedCrossRefGoogle Scholar
  47. 47.
    Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003;169 4:1337–40. Apr.PubMedCrossRefGoogle Scholar
  48. 48.
    Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 2004;34 4:274–92. Oct.PubMedCrossRefGoogle Scholar
  49. 49.
    Froehner M, Beuthien-Baumann B, Wirth MP. 11C-acetate positron emission tomography for occult prostate cancer. Urol Oncol 2006;24 5:410–1. Sep–Oct.PubMedGoogle Scholar
  50. 50.
    Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 2006;24 16:2513–9. Jun 1.PubMedCrossRefGoogle Scholar
  51. 51.
    Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 2003;30 4:607–11. Apr.PubMedGoogle Scholar
  52. 52.
    Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2002;29 10:1380–4. Oct.PubMedCrossRefGoogle Scholar
  53. 53.
    Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med 2002;43 2:181–6. Feb.PubMedGoogle Scholar
  54. 54.
    Herzog H, Rosch F, Stocklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993;34 12:2222–6. Dec.PubMedGoogle Scholar
  55. 55.
    Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H, et al. Uptake kinetics of the somatostatin receptor ligand [86Y] DOTA-dPhe1-Tyr3-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med 1999;26 4:358–66. Apr.PubMedCrossRefGoogle Scholar
  56. 56.
    Helisch A, Forster GJ, Reber H, Buchholz HG, Arnold R, Goke B, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004;31 10:1386–92. Oct.PubMedCrossRefGoogle Scholar
  57. 57.
    Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19 4:482–90. Aug.PubMedGoogle Scholar
  58. 58.
    Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29 5:599–606. Jul.PubMedCrossRefGoogle Scholar
  59. 59.
    Parry R, Schneider D, Hudson D, Parkes D, Xuan JA, Newton A, et al. Identification of a novel prostate tumor target, mindin/RG-1, for antibody-based radiotherapy of prostate cancer. Cancer Res 2005;65 18:8397–405. Sep 15.PubMedCrossRefGoogle Scholar
  60. 60.
    Chong HS, Milenic DE, Garmestani K, Brady ED, Arora H, Pfiester C, et al. In vitro and in vivo evaluation of novel ligands for radioimmunotherapy. Nucl Med Biol 2006;33 4:459–67. May.PubMedCrossRefGoogle Scholar
  61. 61.
    Lundqvist H, Lubberink M, Tolmachev V, Lovqvist A, Sundin A, Beshara S, et al. Positron emission tomography and radioimmunotargeting—general aspects. Acta Oncol 1999;38 3:335–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhuang H, Duarte PS, Pourdehnad M, Maes A, Van Acker F, Shnier D, Garino JP, Fitzgerald RH, Alavi A. The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 2001;42:44–8.PubMedGoogle Scholar
  63. 63.
    Zhuang H, Duarte PS, Rebenstock A, Feng Q, Alavi A. Pulmonary Clostridium perfringens infection detected by FDG positron emission tomography. Clin Nucl Med 2003;28:517–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, Mozley PD, Rossman MD, Albelda SM, Alavi A. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412–7.PubMedGoogle Scholar
  65. 65.
    Chacko TK, Zhuang H, Stevenson K, Moussavian B, Alavi A. The importance of the location of fluorodeoxyglucose uptake in periprosthetic infection in painful hip prostheses. Nucl Med Commun 2002;23:851–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Basu S, Chryssikos T, Houseni M, Scot Malay D, Shah J, Zhuang HM, Alavi A. Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot’s neuroarthropathy from osteomyelitis and soft-tissue infection? Nucl Med Commun 2007;28:465–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhuang H, Yang H, Alavi A. Critical role of 18F-labeled fluorodeoxyglucose PET in the management of patients with arthroplasty. Radiol Clin North Am 2007;45 4:711–8. Jul.PubMedCrossRefGoogle Scholar
  68. 68.
    Meller J, Sahlmann CO, Liersch T, Hao Tang P, Alavi A. Nonprosthesis orthopedic applications of (18)F fluoro-2-deoxy-d-glucose PET in the detection of osteomyelitis. Radiol Clin North Am 2007;45 4:719–33. Jul.PubMedCrossRefGoogle Scholar
  69. 69.
    Kumar R, Basu S, Torigian D, Anand V, Zhuang H, Alavi A. Role of modern imaging techniques for diagnosis of infection in the era of 18F-fluorodeoxyglucose positron emission tomography. Clin Microbiol Rev 2008;21 1:209–24. Jan.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhuang H, Yu JQ, Alavi A. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 2005;43:121–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Basu S, Zhuang H, Alavi A. Imaging of lower extremity artery atherosclerosis in diabetic foot: FDG-PET imaging and histopathological correlates. Clin Nucl Med 2007;32 7:567–8. Jul.PubMedCrossRefGoogle Scholar
  72. 72.
    Basu S, Alzeair S, Li G, Dadparvar S, Alavi A. Etiopathologies associated with intercostal muscle hypermetabolism and prominent right ventricle visualization on 2-deoxy-2[F-18]fluoro-d-glucose-positron emission tomography: significance of an incidental finding and in the setting of a known pulmonary disease. Mol Imaging Biol 2007;9 6:333–9. Nov–Dec.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002;32 1:47–59. Jan.PubMedCrossRefGoogle Scholar
  74. 74.
    Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-DOPA PET data. J Neurol Neurosurg Psychiatry 1994;57:278–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 2005;43 1:35–47. Jan.PubMedCrossRefGoogle Scholar
  76. 76.
    Alavi A, Alavi JB, Lenkinski RE. Complementary roles of PET and MR spectroscopy in the management of brain tumors. Radiology 1990;177 3:617–8. Dec.PubMedGoogle Scholar
  77. 77.
    Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988;62 6:1074–8. Sep 15.PubMedCrossRefGoogle Scholar
  78. 78.
    Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A. Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 1999;26 11:1501–9. Nov.PubMedCrossRefGoogle Scholar
  79. 79.
    Di Chiro G, Brooks RA, Patronas NJ, Bairamian D, Kornblith PL, Smith BH, et al. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 1984;15 Suppl:S138–46.PubMedCrossRefGoogle Scholar
  80. 80.
    Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 1987;164 2:521–6. Aug.PubMedGoogle Scholar
  81. 81.
    Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988;150 1:189–97. Jan.PubMedGoogle Scholar
  82. 82.
    Di Chiro G, Brooks RA. PET-FDG of untreated and treated cerebral gliomas. J Nucl Med 1988;29 3:421–3. Mar.PubMedGoogle Scholar
  83. 83.
    Jolles PR, Chapman PR, Alavi A. PET, CT, and MRI in the evaluation of neuropsychiatric disorders: current applications. J Nucl Med 1989;30 10:1589–606. Oct.PubMedGoogle Scholar
  84. 84.
    Chawluk JB, Alavi A, Dann R, Hurtig HI, Bais S, Kushner MJ, et al. Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 1987;28 4:431–7. Apr.PubMedGoogle Scholar
  85. 85.
    Basu S, Alavi A. Role of FDG-PET in the clinical management of paraneoplastic neurological syndrome: detection of the underlying malignancy and the brain PET–MRI correlates. Mol Imaging Biol 2008, Feb 23 (in press).Google Scholar
  86. 86.
    Alavi A, Reivich M, Greenberg J, Christman D, Fowler J, Hand P, et al. Mapping of functional activity in brain with 18-F-fluoro-deoxyglucose. Sem Nucl Med 1981;11:24–31.CrossRefGoogle Scholar
  87. 87.
    Alavi A, Ferris S, Wolf A, Christman D, Fowler J, MacGregor R, et al. Determination of regional cerebral metabolism in dementia using F-18 deoxyglucose and positron emission tomography. Exp Brain Res 1982;5:185–95.Google Scholar
  88. 88.
    Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 1986;16:2–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Pujol JL, Demoly P, Daures JP, et al. Chest tumor response measurement during lung cancer chemotherapy. Comparison between computed tomography and standard roentgenography. Am Rev Respir Dis 1992;145 5:1149–54. May.PubMedGoogle Scholar
  90. 90.
    Holmes JF, Akkinepalli R. Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma 2005;58 5:902–5. May.PubMedGoogle Scholar
  91. 91.
    Langsteger W, Lind P, Eber B, Koltringer P, Beham A, Eber O. Diagnosis of hepatic hemangioma with 99mTc-labeled red cells: single photon emission computed tomography (SPECT) versus planar imaging. Liver 1989;9 5:288–93. Oct.PubMedGoogle Scholar
  92. 92.
    Ferlin G, Zanco P, Buchberger R, Saitta B, Borsato N. Stress thallium-201 myocardial scintigraphy: planar imaging versus SPECT. J Nucl Med Allied Sci 1988;32 2:82–6. Apr–Jun.PubMedGoogle Scholar
  93. 93.
    Palla A, De Nitto P, Santolicandro A. Planar versus SPECT studies in lung disease. J Nucl Med Biol 1994;38 1:22–36. Mar.Google Scholar
  94. 94.
    Martin WH, Delbeke D, Patton JA, Sandler MP. Detection of malignancies with SPECT versus PET, with 2-[fluorine-18] fluoro-2-deoxy-d-glucose. Radiology 1996;198 1:225–31. Jan.PubMedGoogle Scholar
  95. 95.
    Basu S, Zaidi H, Houseni M, Udupa J, Acton P, Torigian DA, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007;37 3:223–39. May.PubMedCrossRefGoogle Scholar
  96. 96.
    Basu S, Alavi A. Feasibility of automated partial-volume correction of SUVs in current PET/CT scanners: can manufacturers provide integrated, ready-to-use software? J Nucl Med 2008 (in press).Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania School of MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Radiation Medicine Centre (BARC)Tata Memorial Center AnnexeMumbaiIndia

Personalised recommendations