Advertisement

ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

  • Ferid Haddad
  • Ludovic Ferrer
  • Arnaud Guertin
  • Thomas Carlier
  • Nathalie Michel
  • Jacques Barbet
  • Jean-François Chatal
Review Article

Abstract

Purpose

This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron.

Methods

We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections.

Results

Three radionuclides appear well suited to targeted radionuclide therapy using beta (67Cu, 47Sc) or alpha (211At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy (64Cu, 124I, 44Sc), or that can be generator-produced (82Rb, 68Ga) or providing the opportunity of a new imaging modality (44Sc) are considered to have a great interest at short term whereas 86Y, 52Fe, 55Co, 76Br or 89Zr are considered to have a potential interest at middle term.

Conclusions

Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs.

Keywords

Cyclotron Radionuclides Positron emission tomography (PET) Targeted radionuclide therapy Dosimetry 

Notes

Acknowledgements

The cyclotron ARRONAX is a project promoted by the Regional Council of Pays de la Loire. It has been financed by local authorities, the French government and the European Union.

References

  1. 1.
    Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18(3):357–66. May–Jun.PubMedCrossRefGoogle Scholar
  2. 2.
    DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumour regression in patients with lymphoma. J Nucl Med 1999;40(2):302–10, Feb.PubMedGoogle Scholar
  3. 3.
    Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45(8):1366–72. Aug.PubMedGoogle Scholar
  4. 4.
    Barbet J, Chatal JF, Gauche F, Martino J. Which radionuclides will nuclear oncology need tomorrow? Eur J Nucl Med Mol Imaging 2006;33(6):627–30, Jun.PubMedCrossRefGoogle Scholar
  5. 5.
    Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006;47:1059.PubMedGoogle Scholar
  6. 6.
    Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46:164S–71S.PubMedGoogle Scholar
  7. 7.
    Lee FT, Scott AM. Immuno-PET for tumor targeting. J Nucl Med 2003;44:1282–3.PubMedGoogle Scholar
  8. 8.
    Goldenberg DM, Sharkey RM. Advances in cancer therapy with radiolabeled monoclonal antibodies. Q J Nucl Med Mol Imaging 2006;50(4):248–64, Dec.PubMedGoogle Scholar
  9. 9.
    de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003;30(3):463–9, Mar.PubMedGoogle Scholar
  10. 10.
    Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 2006;24(5):823–34. Feb 10.PubMedCrossRefGoogle Scholar
  11. 11.
    Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 1998;49:1541–49.PubMedCrossRefGoogle Scholar
  12. 12.
    DeNardo GL, DeNardo SJ, Kukis DL, O'Donnell RT, Shen S, Goldstein DS, et al. Maximum tolerated dose of 67-Cu-2IT-BAT-LYM1 for fractionated radioimmunotherapy of non-Hodgkin's lymphoma: a pilot study. Anti Cancer Res 1998;18:2779–88.Google Scholar
  13. 13.
    Robinson S, Julyan PJ, Hastings DL, Zweit J. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I. Phys Med Biol 2004;49:5505.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams HA, Robinson S, Julyan P, Zweit J, Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med 2005;32:1473.CrossRefGoogle Scholar
  15. 15.
    Zimmermann K, Grönberg J, Honer M, Ametamey S, Schubiger PA, Novak-Hofer I. Targeting of renal carcinoma with 67/64Cu-labeled anti-L1-CAM antibody chCE7: selection of copper ligands and PET imaging. Nucl Med Biol 2003;30:417.PubMedCrossRefGoogle Scholar
  16. 16.
    Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn ZR, et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 1995;36:1818.PubMedGoogle Scholar
  17. 17.
    Shen S, DeNardo GL, DeNardo SJ, Salako Q, Morris G, Banks D, et al. Dosimetric evaluation of copper-64 in copper-67-2IT-BAT-Lym-1 for radioimmunotherapy. J Nucl Med 1996;37:146.PubMedGoogle Scholar
  18. 18.
    Dearling JL, Lewis JS, Mullen GE, Rae MT, Zweit J, Blower PJ. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med 1998;25:788.PubMedCrossRefGoogle Scholar
  19. 19.
    Laforest R, Dehashti F, Lewis JS, Schwarz SW. Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med 2005;32:764.CrossRefGoogle Scholar
  20. 20.
    Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28:1751.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide—a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 1994;35:317.PubMedGoogle Scholar
  22. 22.
    Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005;46(Suppl):763.PubMedGoogle Scholar
  23. 23.
    Klivonyi G, Schuhmacher J, Patzelt E, Hauser H, Matys R, Moock M, et al. Gallium-68 chelate imaging of human colon carcinoma xenografts pretargeted with bispecific anti-CD44V6/anti-gallium chelate antibodies. J Nucl Med 1998;39:1769.Google Scholar
  24. 24.
    Schuhmacher J, Kaul S, Klivonyi G, Junkermann H, Magener A, Henze M, et al. Immunoscintigraphy with positron emission tomography: gallium-68 chelate imaging of breast cancer pretargeted with bispecific anti-MUC1/anti-Ga chelate antibodies. Cancer Res 2001;61:3712.PubMedGoogle Scholar
  25. 25.
    Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44.PubMedCrossRefGoogle Scholar
  26. 26.
    Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46(Suppl):172S.PubMedGoogle Scholar
  27. 27.
    Shea MJ, Wilson RA, deLandsheere CM, Deanfield JE, Watson IA, Kensett MJ, et al. Use of short and long-lived rubidium tracers for the study of transient ischemia. J Nucl Med 1987;28:989.PubMedGoogle Scholar
  28. 28.
    Anonymous. The strontium-82/rubidium-82 generator. Int J Rad Appl Instrum 1987;38(3):171–239.Google Scholar
  29. 29.
    Erdi Y, Macapinlac H, Larson S, Erdi A, Yeung H, Furhang E, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 1999;2:41.PubMedCrossRefGoogle Scholar
  30. 30.
    Eschmann MS, Reischl G, Bilger K, Kupferschleger J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002;29:760–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 2005;65:622.PubMedGoogle Scholar
  32. 32.
    Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44:1962.PubMedGoogle Scholar
  33. 33.
    Lee FT, Hall C, Rigopoulos A, Zweit J, Pathmaraj K, O'Keefe GJ, et al. Immuno-PET of human colon xenograft- bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med 2001;42:764.PubMedGoogle Scholar
  34. 34.
    Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, et al. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 2005;32:395.PubMedCrossRefGoogle Scholar
  35. 35.
    Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471.PubMedCrossRefGoogle Scholar
  36. 36.
    Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421.PubMedCrossRefGoogle Scholar
  37. 37.
    IAEA. Optimization of production and quality control of therapeutic radionuclides and radiopharmaceuticals. IAEA-TECDOC-1114 1999. Vienna: IAEA; 1999.Google Scholar
  38. 38.
    Sachdev DR, Yaffe L. Isomer ratios for the 44Ca(p,n)44m,gSc and 85Rb(p,n)85m,gSr reactions. Can J Phys 1969;47:1667.Google Scholar
  39. 39.
    Kurfess JD, Phlips BF (2001) Coincident Compton nuclear medical imager. In: Proceedings of the IEEE Nuclear Science Symposium conference, San Diego, California.Google Scholar
  40. 40.
    Kurfess JD, Johnson WN, Kroeger RA, Phlips BF, Wulf EA. Timing methods for depth determination in germanium strip detectors. Nucl Instr Meth A 2003;505:178.CrossRefGoogle Scholar
  41. 41.
    Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000;7:971.PubMedGoogle Scholar
  42. 42.
    Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H, et al. Uptake kinetics of the somatostatin receptor ligand 86YDOTA-DPhe1- Tyr3-octreotide (86YSMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med 1999;26:358.PubMedCrossRefGoogle Scholar
  43. 43.
    Lundqvist H, Lubberink M, Tolmachev V, Lovqvist A, Sundin A, Beshara S, et al. Positron emission tomography and radioimmunotargeting general aspects. Acta Oncol 1999;38:335.PubMedCrossRefGoogle Scholar
  44. 44.
    Wester HJ, Brockmann J, Rosch F, Wutz W, Herzog H, Smith-Jones P, et al. PET-pharmacokinetics of 18F-octreotide: a comparison with 67Ga-DFO- and 86Y-DTPA-octreotide. Nucl Med Biol 1997;24:275.PubMedCrossRefGoogle Scholar
  45. 45.
    Yoo J, Tang L, Perkins TA, Rowland DJ, Laforest R, Lewis, et al. Preparation of high specific activity (86)Y using a small biomedical cyclotron. Nucl Med Biol 2005;32:891.PubMedCrossRefGoogle Scholar
  46. 46.
    Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30:716.PubMedGoogle Scholar
  47. 47.
    Walrand S, Jamar F, Mathieu L, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354.PubMedGoogle Scholar
  48. 48.
    Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays. Med Phys 2003;30:2410.PubMedCrossRefGoogle Scholar
  49. 49.
    Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19:482.PubMedGoogle Scholar
  50. 50.
    Herzog H, Rosch F, Stocklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993;34:2222.PubMedGoogle Scholar
  51. 51.
    Forster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Macke HR, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med 2001;28:1743.PubMedCrossRefGoogle Scholar
  52. 52.
    De Reuck J, Santens P, Strijckmans K, Lemahieu I, Lemahieu I. Cobalt-55 positron emission tomography in vascular dementia: significance of white matter changes. J Neurol Sci 2001;193:1.PubMedCrossRefGoogle Scholar
  53. 53.
    Stevens H, Jansen HM, De Reuck J, Lemmerling M, Strijckmans K, Goethals P, et al. 55Co-PET in stroke: relation to bloodflow, oxygen metabolism and gadolinium-MRI. J Neurol Sci 1999;171:11.PubMedCrossRefGoogle Scholar
  54. 54.
    Jansen HM, Dierckx RA, Hew JM, Paans AM, Minderhoud JM, Korf J. Positron emission tomography in primary brain tumours using cobalt-55. Nucl Med Commun 1997;18:734.PubMedCrossRefGoogle Scholar
  55. 55.
    Ellis BL, Sharma HL. Co, Fe and Ga chelates for cell labelling: a potential use in PET imaging? Nucl Med Commun 1999;20:1017.PubMedCrossRefGoogle Scholar
  56. 56.
    Karanikas G, Schmaljohann J, Rodrigues M, Chehne F, Granegger S, Sinzinger H. Examination of co-complexes for radiolabeling of platelets in positron emission tomographic studies. Thromb Res 1999;94:111.PubMedCrossRefGoogle Scholar
  57. 57.
    Jansen HM, Knollema S, van der Duin LV, Willemsen AT, Wiersma A, Franssen EJ, et al. Pharmacokinetics and dosimetry of cobalt-55 and cobalt-57. J Nucl Med 1996;37:2082.PubMedGoogle Scholar
  58. 58.
    Zaman MR, Spellerberg S, Qaim SM. Production of 55Co via the 54Fe(d,n)-process and excitation functions of 54Fe(d,t)53Fe and 54Fe(d,α)52mMn reactions from threshold up to 13.8 MeV. Radiochim Acta 2003;91:105.CrossRefGoogle Scholar
  59. 59.
    Francois PE, Szur L. Use of iron-52 as a radioactive tracer. Nature 1958;182:1665.PubMedCrossRefGoogle Scholar
  60. 60.
    Anger HO, Vandyke DC. Human bone marrow distribution shown in vivo by iron-52 and the positron scintillation camera. Science 1964;144:1587.PubMedCrossRefGoogle Scholar
  61. 61.
    Silvester DJ, Sugden J. Production of carrier-free iron-52 for medical use. Nature 1966;210:1282.PubMedCrossRefGoogle Scholar
  62. 62.
    Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24:6.PubMedCrossRefGoogle Scholar
  63. 63.
    Zweit J, Downey S, Sharma H. A method for the production of iron-52 with a very low iron-55 contamination. Int J Rad Appl Instrum 1988;39:1197–201.CrossRefGoogle Scholar
  64. 64.
    Atcher RW, Friedman AM, Huizenga JR, Rayudu GV, Silverstein EA, Turner DA. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography. J Nucl Med 1980;21:565.PubMedGoogle Scholar
  65. 65.
    Lubberink M, Tolmachev V, Beshara S, Lundqvist H. Quantification aspects of patient studies with 52Fe in positron emission tomography. Appl Radiat Isot 1999;51(6):707–15, Dec.PubMedCrossRefGoogle Scholar
  66. 66.
    Sundin J, Tolmachev V, Koziorowski J, Carlsson J, Lundqvist H, Welt S, et al. High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T. Nucl Med Biol 1999;26:923.PubMedCrossRefGoogle Scholar
  67. 67.
    Lovqvist A, Sundin A, Ahlstrom H, Carlsson J, Lundqvist H. Pharmacokinetics and experimental PET imaging of a bromine-76-labeled monoclonal anti-CEA antibody. J Nucl Med 1997;38:395–401.PubMedGoogle Scholar
  68. 68.
    Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med 2002;43:1688–98.PubMedGoogle Scholar
  69. 69.
    Meijs WE, Haisma HJ, Klok RP, Van Gog FB, Kievit E, Pinedo HM, et al. Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J Nucl Med 1997;38:112–8.PubMedGoogle Scholar
  70. 70.
    Verel I, Visser GWM, Boellaard R, Boerman OC, Van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med 2003;44:1663.PubMedGoogle Scholar
  71. 71.
    Mausner LF, Kolsky KL, Joshi V, Srivastava SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 1998;49:285–94.PubMedCrossRefGoogle Scholar
  72. 72.
    DeNardo GL, DeNardo SJ, Meares CF, Kukis DL, Diril H, McCall MJ, et al. Pharmacokinetics of copper-67 conjugated Lym-1, a potential therapeutic radioimmunoconjugate, in mice and patients with lymphoma. Antibody Immunoconj Radiopharm 1991;4:777–85.Google Scholar
  73. 73.
    DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CF, DeNardo SJ. 67-Cu versus 131-I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin’s lymphoma. Clin Cancer Res 1999;5:533–41.PubMedGoogle Scholar
  74. 74.
    O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A, et al. A clinical trial of radioimmunotherapy with 67-Cu-2IT-BATLym- 1. J Nucl Med 1999;40:2014–20.PubMedGoogle Scholar
  75. 75.
    DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med 1999;40:302–10.PubMedGoogle Scholar
  76. 76.
    Novak-Hofer I, Schubiger PA. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 2002;29:821–30.PubMedCrossRefGoogle Scholar
  77. 77.
    McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 1998;25:1341–51.CrossRefGoogle Scholar
  78. 78.
    Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted alpha-particle therapy. J Nucl Med 2005;46(Suppl 1):199S–204S.PubMedGoogle Scholar
  79. 79.
    Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 2005;32:601–14.PubMedCrossRefGoogle Scholar
  80. 80.
    Johnson EL, Turkington TG, Jaszczak RJ, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol 1995;22:45–54.PubMedCrossRefGoogle Scholar
  81. 81.
    Welch MJ. Potential and pitfalls of therapy with alpha-particles. J Nucl Med 2005;46:1254–5.PubMedGoogle Scholar
  82. 82.
    Cherel M, Davodeau F, Kraeber-Bodere F, Chatal JF. Current status and perspectives in alpha radioimmunotherapy. Q J Nucl Med Mol Imaging 2006;50:322–9.PubMedGoogle Scholar
  83. 83.
    Szelecsényi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, et al. Investigation of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes up to 100 MeV: production of 64Cu. Nucl Instr and Meth B 2005;240:625.CrossRefGoogle Scholar
  84. 84.
    Mausner LF, Hock JC. Target design consideration for isotope production with high intensity 200 MeV protons. Nucl Inst Meth A 1997;397:18.CrossRefGoogle Scholar
  85. 85.
    Quaim SM. Nuclear data for medical applications: an overview. Radiochim Acta 2001;89:189.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ferid Haddad
    • 1
  • Ludovic Ferrer
    • 2
    • 3
  • Arnaud Guertin
    • 1
  • Thomas Carlier
    • 2
  • Nathalie Michel
    • 1
  • Jacques Barbet
    • 2
  • Jean-François Chatal
    • 2
  1. 1.SUBATECH, Université de Nantes, Ecole des Mines de Nantes, CNRS/IN2P3NantesFrance
  2. 2.Département de Recherche en Cancérologie, InsermUniversité de NantesNantesFrance
  3. 3.René Gauducheau Cancer CenterNantesFrance

Personalised recommendations