Advertisement

Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30

  • Lars R. Perk
  • Marijke Stigter-van Walsum
  • Gerard W. M. Visser
  • Reina W. Kloet
  • Maria J. W. D. Vosjan
  • C. René Leemans
  • Giuseppe Giaccone
  • Raffaella Albano
  • Paolo M. Comoglio
  • Guus A. M. S. van DongenEmail author
Original Article

Abstract

Purpose

Targeting the c-Met receptor with monoclonal antibodies (MAbs) is an appealing approach for cancer diagnosis and treatment because this receptor plays a prominent role in tumour invasion and metastasis. Positron emission tomography (PET) might be a powerful tool for guidance of therapy with anti-Met MAbs like the recently described MAb DN30 because it allows accurate quantitative imaging of tumour targeting (immuno-PET). We considered the potential of PET with either 89Zr-labelled (residualising radionuclide) or 124I-labelled (non-residualising radionuclide) DN30 for imaging of Met-expressing tumours.

Materials and methods

The biodistribution of co-injected 89Zr-DN30 and iodine-labelled DN30 was compared in nude mice bearing either the human gastric cancer line GLT-16 (high Met expression) or the head-and-neck cancer line FaDu (low Met expression). PET images were acquired in both xenograft models up to 4 days post-injection (p.i.) and used for quantification of tumour uptake.

Results

Biodistribution studies in GTL-16-tumour-bearing mice revealed that 89Zr-DN30 achieved much higher tumour uptake levels than iodine-labelled DN30 (e.g. 19.6%ID/g vs 5.3%ID/g, 5 days p.i.), while blood levels were similar, indicating internalisation of DN30. Therefore, 89Zr-DN30 was selected for PET imaging of GLT-16-bearing mice. Tumours as small as 11 mg were readily visualised with immuno-PET. A distinctive lower 89Zr uptake was observed in FaDu compared to GTL-16 xenografts (e.g. 7.8%ID/g vs 18.1%ID/g, 3 days p.i.). Nevertheless, FaDu xenografts were also clearly visualised with 89Zr-DN30 immuno-PET. An excellent correlation was found between PET-image-derived 89Zr tumour uptake and ex-vivo-assessed 89Zr tumour uptake (R 2 = 0.98).

Conclusions

The long-lived positron emitter 89Zr seems attractive for PET-guided development of therapeutic anti-c-Met MAbs.

Keywords

Met receptor Immuno-PET Molecular imaging DN30 Zirconium-89 

Notes

Acknowledgments

This project was financially supported by the Dutch Technology Foundation (grant VBC.6120) and by the Associazione Italiana per la Ricerca sul Cancro. We thank the technical staff of BV Cyclotron and the Radionuclide Center for supplying and processing of 89Zr, Floris van Velden for PET analyses and Otto Hoekstra for providing PET imaging facilities and for reviewing the manuscript.

References

  1. 1.
    Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 2006;6:637–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997;16:68–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4:915–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002;2:289–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 2006;12:3657–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, et al. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer 2005;113:678–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, et al. Overexpression and amplification of the Met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1995;1:147–54.PubMedGoogle Scholar
  8. 8.
    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Corso S, Comoglio PM, Giordano S. Cancer therapy: can the challenge be MET? Trends Mol Med 2005;11:284–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Cao B, Su Y, Oskarsson M, Zhao P, Kort EJ, Fisher RJ, et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci U S A 2001;98:7443–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S, et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 2006;103:5090–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Fan S, Wang JA, Yuan RQ, Rockwell S, Andres J, Zlatapolskiy A, et al. Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 1998;17:131–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gonen M, Ruan S, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 2007;8:304–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Dongen GAMS, Visser GWM, Lub-de Hooge MN, De Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist 2007;12:1379–89.PubMedCrossRefGoogle Scholar
  15. 15.
    Verel I, Visser GWM, Vosjan MJWD, Finn R, Boellaard R, Van Dongen GAMS. High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy. Eur J Nucl Med Mol Imaging 2004;31:1645–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Verel I, Visser GWM, Boellaard R, Stigter-Van Walsum M, Snow GB, Van Dongen GAMS. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 2003;44:1271–81.PubMedGoogle Scholar
  17. 17.
    Verel I, Visser GWM, Boerman OC, Van Eerd JEM, Finn R, Boellaard R, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. Cancer Biother Radiopharm 2003;18:655–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Perk LR, Visser GWM, Vosjan MJWD, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46:1898–906.PubMedGoogle Scholar
  19. 19.
    Borjesson PKE, Jauw YWS, Boellaard R, De Bree R, Comans EFI, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 2006;12:2133–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM. Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci 1998;111:237–47.PubMedGoogle Scholar
  21. 21.
    Ponzetto C, Giordano S, Peverali F, Della Valle G, Abate ML, Vaula G, et al. C-met is amplified but not mutated in a cell line with an activated met tyrosine kinase. Oncogene 1991;6:553–9.PubMedGoogle Scholar
  22. 22.
    Rangan SRS. A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer 1972;29:117–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJWD, Visser GWM, Zijlstra JM, et al. Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33:1337–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Visser GW, Klok RP, Gebbinck JWK, Ter Linden T, Van Dongen GA, Molthoff CF. Optimal quality 131I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med 2001;42:509–19.PubMedGoogle Scholar
  25. 25.
    Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the immunoreactive fraction of radiolabeled monoclonal-antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 1984;72:77–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Sharkey RM, Natale A, Goldenberg DM, Mattes MJ. Rapid blood clearance of immunoglobulin G2a and immunoglobulin G2b in nude mice. Cancer Res 1991;51:3102–7.PubMedGoogle Scholar
  27. 27.
    Van Gog FB, Brakenhoff RH, Snow GB, Van Dongen GAMS. Rapid elimination of mouse/human chimeric monoclonal antibodies in nude mice. Cancer Immunol Immunother 1997;44:103–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Verel I, Visser GWM, Boellaard R, Boerman OC, Van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med 2003;44:1663–70.PubMedGoogle Scholar
  29. 29.
    De Jong HWAM, Van Velden FHP, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007;52:1505–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Vaidyanathan G, Zalutsky MR. Synthesis of N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate: a radio-iodination agent for labeling internalizing proteins and peptides. Nat Protoc 2007;2:282–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Hay RV, Cao B, Skinner RS, Su Y, Zhao P, Gustafson MF, et al. Nuclear imaging of Met-expressing human and canine cancer xenografts with radiolabeled monoclonal antibodies (MetSeek). Clin Cancer Res 2005;11:7064s–9s.PubMedCrossRefGoogle Scholar
  32. 32.
    Zalutsky MR. Potential of immuno-positron emission tomography for tumor imaging and immunotherapy planning. Clin Cancer Res 2006;12:1958–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Dijkers E, Lub-de Hooge MN, Kosterink JG, Jager PL, Brouwers AH, Perk LR, et al. Characterization of 89Zr-trastuzumab for clinical HER2 immunoPET imaging. J Clin Oncol 2007;25(Suppl 1):3508.Google Scholar
  34. 34.
    Nagengast WB, De Vries EG, Hospers GA, Mulder NH, De Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007;48:1313–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Perk LR, Visser GWM, Budde M, Vosjan MJWD, Jurek P, Kiefer GE, et al. Facile radiolabeling of monoclonal antibodies and other proteins with zirconium-89 or gallium-68 for PET imaging using p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc 2008. DOI  10.1038/nprot.2008.22.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lars R. Perk
    • 1
  • Marijke Stigter-van Walsum
    • 1
  • Gerard W. M. Visser
    • 2
  • Reina W. Kloet
    • 2
  • Maria J. W. D. Vosjan
    • 1
  • C. René Leemans
    • 1
  • Giuseppe Giaccone
    • 3
  • Raffaella Albano
    • 4
  • Paolo M. Comoglio
    • 4
  • Guus A. M. S. van Dongen
    • 1
    • 2
    Email author
  1. 1.Department of Otolaryngology–Head and Neck SurgeryVU University Medical CentreAmsterdamThe Netherlands
  2. 2.Nuclear Medicine and PET ResearchVU University Medical CentreAmsterdamThe Netherlands
  3. 3.Medical Oncology Branch CCRNational Cancer InstituteBethesdaUSA
  4. 4.Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC)University of Turin Medical SchoolTurinItaly

Personalised recommendations