Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours

  • Valentina Ambrosini
  • Paola Tomassetti
  • Paolo Castellucci
  • Davide Campana
  • Giancarlo Montini
  • Domenico Rubello
  • Cristina Nanni
  • Anna Rizzello
  • Roberto Franchi
  • Stefano Fanti
Original Article

Abstract

Purpose

18F-FDG positron emission tomography (PET) value for the assessment of neuro-endocrine tumours (NET) is limited. Preliminary studies indicate that 18F-DOPA and 68Ga-DOTA-NOC are more accurate for disease assessment and 68Ga-DOTA peptides provide additional data on receptor status that are crucial for targeted radionuclide therapy. At present, there are no comparative studies investigating their role in NET.

Aim

The aim of this study was to compare 68Ga-DOTA-NOC and 18F-DOPA for the evaluation of gastro-entero-pancreatic and lung neuro-endocrine tumours.

Materials and methods

Thirteen patients with biopsy-proven NET (gastro-entero-pancreatic or pulmonary) were prospectively enrolled and scheduled for 18F-DOPA and 68Ga-DOTA-NOC PET. PET results obtained with both tracers were compared with each other, with other conventional diagnostic procedures (CT, ultrasound) and with follow-up (clinical, imaging).

Results

The most common primary tumour site was the pancreas (8/13) followed by the ileum (2/13), the lung (2/13) and the duodenum (1/13). The carcinoma was well differentiated in 10/13 and poorly differentiated in 3/13 cases. 68Ga-DOTA-NOC PET was positive, showing at least one lesion, in 13/13 cases while 18F-DOPA PET was positive in 9/13. On a lesions basis, 68Ga-DOTA-NOC identified more lesions than 18F-DOPA (71 vs 45), especially at liver, lung and lymph node level. 68Ga-DOTA-NOC correctly identified the primary site in six of eight non-operated cases (in five cases, the primary was surgically removed before PET), while 18F-DOPA identified the primary only in two of eight cases.

Conclusions

Although the patients studied are few and heterogeneous, our data show that 68Ga-DOTA-NOC is accurate for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours in either the primary or metastatic site and that it offers several advantages over 18F-DOPA.

Keywords

68Ga-DOTA-NOC 18F-DOPA PET Neuro-endocrine tumours 

References

  1. 1.
    Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology 2005;128(6):1717–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003;97(4):934–59.PubMedCrossRefGoogle Scholar
  3. 3.
    Lepage C, Bouvier AM, Phelip JM, Hatem C, Vernet C, Faivre J. Incidence and management of malignant digestive endocrine tumours in a well defined French population. Gut 2004;53(4):549–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004;80(Suppl 1):3–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Ueberberg B, Tourne H, Redman A, Walz MK, Schmid KW, Mann K, et al. Differential expression of the human somatostatin receptor subtypes sst1 to sst5 in various adrenal tumors and normal adrenal gland. Horm Metab Res 2005;37(12):722–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Papotti M, Kuma U, Volante M, Pecchiono C, Patel YC. Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol 2001;54:641–9.CrossRefGoogle Scholar
  7. 7.
    Oda Y, Tanaka Y, Naruse T, Sasanabe R, Tsubamoto M, Funahashi H. Expression of somatostatin receptor and effects of somatostatin analog on pancreatic endocrine tumors. Surg Today 2002;32(8):690–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Papotti M, Bongiovanni M, Volante M, Allia E, Landolfi S, Helboe L, et al. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 2002;440(5):461–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007;21(1):69–85. Mar.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramage JK, Davies AH, Ardill J, Bax N, Caplin M, Grossman A, et al. UKNETwork for neuroendocrine tumours. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut 05;54(Suppl 4):iv1–16. Jun.CrossRefGoogle Scholar
  11. 11.
    Kaltsas G, Rockall A, Papadogias D, Reznek R, Grossman AB. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol 2004;151:15–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumbasar B, Kamel IR, Tekes A, Eng J, Fishman EK, Wahl RL. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdom Imaging 2004;29:696–702.PubMedCrossRefGoogle Scholar
  13. 13.
    Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 2006;47:1455–62.PubMedGoogle Scholar
  14. 14.
    Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48(4):508–18. Apr.PubMedCrossRefGoogle Scholar
  15. 15.
    Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schafer M, et al. Comparison of (68)Ga-DOTATOC PET and (111)In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007;34(10):1617–26. Oct.PubMedCrossRefGoogle Scholar
  16. 16.
    Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 1998;25:79–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001;220(2):373–80.PubMedGoogle Scholar
  18. 18.
    Klöppel G, Rindi G, Anlauf M, Perren A, Komminoth P. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch 2007;451(Suppl 1):S9–27. Aug.PubMedCrossRefGoogle Scholar
  19. 19.
    Klöppel G. Tumour biology and histopathology of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007;21(1):15–31. Mar.PubMedCrossRefGoogle Scholar
  20. 20.
    Meyer GJ, Maecke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 2004;31(8):1097–104. Aug.PubMedCrossRefGoogle Scholar
  21. 21.
    DeVries EFJ, Luurtsema G, Brussermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl Radiat Isot 1999;51:389–94.CrossRefGoogle Scholar
  22. 22.
    Ambrosini V, Tomassetti P, Rubello D, Campana D, Nanni C, Castellucci P, et al. Role of 18F-dopa PET/CT imaging in the management of patients with 111In-pentetreotide negative GEP tumours. Nucl Med Commun 2007;28(6):473–7. Jun.PubMedCrossRefGoogle Scholar
  23. 23.
    Wild D, Schmitt JS, Ginj M, Mäcke HR, Bernard BF, Krenning E, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 2003;30(10):1338–47. Oct.PubMedCrossRefGoogle Scholar
  24. 24.
    Wild D, Macke HR, Waser B, Reubi JC, Ginj M, Rasch H, et al. 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 2005;32(6):724. Jun.PubMedCrossRefGoogle Scholar
  25. 25.
    Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitsas N, et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33(4):460–6. Apr.PubMedCrossRefGoogle Scholar
  26. 26.
    Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 2002;43(5):610–6. May.PubMedGoogle Scholar
  27. 27.
    Wehrmann C, Senftleben S, Zachert C, Muller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 2007;22(3):406–16. Jun.PubMedCrossRefGoogle Scholar
  28. 28.
    Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 2003;30(5):781–93. May.PubMedGoogle Scholar
  29. 29.
    Pettinato C, Sarnelli A, Di Donna M, Civollani S, Nanni C, Montini G, et al. (68)Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2008;35:72–9. [Epub ahead of print], Sep 14.PubMedCrossRefGoogle Scholar
  30. 30.
    Reubi JC, Chayvialle JA, Franc B, Cohen R, Calmettes C, Modigliani E. Somatostatin receptors and somatostatin content in medullary thyroid carcinomas. Lab Invest 1991;64(4):567–73. Apr.PubMedGoogle Scholar
  31. 31.
    Baudin E, Lumbroso J, Schlumberger M, Leclere J, Giammarile F, Gardet P, et al. Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med 1996;37(6):912–6.PubMedGoogle Scholar
  32. 32.
    von Falck C, Boerner AR, Galanski M, Knapp WH. Neuroendocrine tumour of the mediastinum: fusion of 18F-FDG and 68Ga-DOTATOC PET/CT datasets demonstrates different degrees of differentiation. Eur J Nucl Med Mol Imaging 2007;34(5):812. May.CrossRefGoogle Scholar
  33. 33.
    Koopmans KP, de Vries EG, Kema IP, Elsinga PH, Neels OC, Sluiter WJ, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 2006;7(9):728–34. Sep.PubMedCrossRefGoogle Scholar
  34. 34.
    Orlefors H, Sundin A, Lu L, Oberg K, Langstrom B, Eriksson B, et al. Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33(1):60–5. Jan.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Valentina Ambrosini
    • 1
    • 2
  • Paola Tomassetti
    • 1
    • 2
  • Paolo Castellucci
    • 1
    • 2
  • Davide Campana
    • 1
    • 2
  • Giancarlo Montini
    • 1
    • 2
  • Domenico Rubello
    • 1
    • 2
  • Cristina Nanni
    • 1
    • 2
  • Anna Rizzello
    • 1
    • 2
  • Roberto Franchi
    • 1
    • 2
  • Stefano Fanti
    • 1
    • 2
  1. 1.Unità Operativa di Medicina NucleareAzienda Ospedaliero Universitaria di Bologna, Policlinico S.Orsola-MalpighiBolognaItaly
  2. 2.Unità Operativa di Medicina InternalPoliclinico S.Orsola-MalpighiBolognaItaly

Personalised recommendations