68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression

  • Clemens Decristoforo
  • Ignacio Hernandez Gonzalez
  • Janette Carlsen
  • Marco Rupprich
  • Marc Huisman
  • Irene Virgolini
  • Hans-Jürgen Wester
  • Roland Haubner
Original article



αvβ3 integrins are important cell adhesion receptors involved in angiogenic processes. Recently, we demonstrated using [18F]Galacto-RGD that monitoring of αvβ3 expression is feasible. Here, we introduce 68Ga- and 111In-labelled derivatives and compare them with [18F]Galacto-RGD.


For radiolabelling, cyclo(RGDfK(DOTA)) was synthesised using SPPS. For in vitro characterisation determination of partition coefficients, protein binding, metabolic stability, αvβ3 affinity and cell uptake and for in vivo characterization, biodistribution studies and micro positron emission tomography (PET) imaging were carried out. For in vivo and in vitro studies, human melanoma M21 (αvβ3 positive) and M21-L (αvβ3 negative) cells were used.


Both tracers can be synthesised straightforward. The compounds showed hydrophilic properties and high metabolic stability. Up to 23% protein-bound activity for [68Ga]DOTA-RGD and only up to 1.4% for [111In]DOTA-RGD was found. Cell uptake studies indicate receptor-specific accumulation. This is confirmed by the biodistribution data. One hour p.i. accumulation in αvβ3-positive tumours was 2.9 ± 0.3%ID/g and in αvβ3-negative tumours 0.8 ± 0.1%ID/g for [68Ga]DOTA-RGD ([111In]DOTA-RGD: 1.9 ± 0.3%ID/g and 0.5 ± 0.2%ID/g; [18F]Galacto-RGD: 1.6 ± 0.2%ID/g and 0.4 ± 0.1%ID/g). Thus, tumour uptake ratios were comparable. Due to approx. 3-fold higher blood pool activities for [68Ga]DOTA-RGD, tumour/blood ratios were higher for [111In]DOTA-RGD and [18F]Galacto-RGD. However, microPET studies demonstrated that visualisation of αvβ3-positive tumours using [68Ga]DOTA-RGD is possible.


Our data indicate that [68Ga]DOTA-RGD allows monitoring of αvβ3 expression. Especially, the much easier radiosynthesis compared to [18F]Galacto-RGD would make it an attractive alternative. However, due to higher blood pool activity, [18F]Galacto-RGD remains superior for imaging αvβ3 expression. Introduction of alternative chelator systems may overcome the disadvantages.


Ga-68 RGD-peptides αvβ3 Molecular imaging Angiogenesis 



Stefan Schwarz, Svetlana Sirakanyan and Sybille Reder are gratefully acknowledged for their excellent technical assistance. We thank Bettina Sarg, Division of Clinical Biochemistry, Medizinische Universität Innsbruck for carrying out the LC–MS analysis. David A. Cheresh, The Scripps Institute, La Jolla, CA was acknowledged for kindly providing the melanoma M21 and M21-L cells.


  1. 1.
    Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest. 1999;103:47–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Creamer D, Sullivan D, Bicknell R, Barker J. Angiogenesis in psoriasis. Angiogenesis. 2002;5:231–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, Gimple LW, Powers ER, Mousa SA, Sarembock IJ. Selective αvβ3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation. 2001;103:1906–11.PubMedGoogle Scholar
  4. 4.
    Chavakis E, Riecke B, Lin J, Linn T, Bretzel RG, Preissner KT, Brownlee M, Hammes HP. Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides. Diabetologia. 2002;45:262–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Folkman J. Role of angiogenesis in tumour growth and metastasis. Semin Oncol. 2002;29:15–8.PubMedGoogle Scholar
  6. 6.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Alghisi GC, Ruegg C. Vascular integrins in [111In]DOTA-RGD tumour angiogenesis: mediators and therapeutic targets. Endothelium. 2006;13:113–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumour angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004;10:1439–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Haubner R. αvβ3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med. Mol Imaging 2006;13:54–63.CrossRefGoogle Scholar
  10. 10.
    Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, Schwaiger M. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15:61–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61:1781–85.PubMedGoogle Scholar
  12. 12.
    Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:e70.PubMedCrossRefGoogle Scholar
  13. 13.
    Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res. 2006;12:3942–49.PubMedCrossRefGoogle Scholar
  14. 14.
    Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Common. 2007;28:870–75.CrossRefGoogle Scholar
  15. 15.
    Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32:478–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Decristoforo C, Santos I, Pietzsch HJ, Kuenstler JU, Duatti A, Smith CJ, et al. Comparison of in vitro and in vivo properties of [99mTc]cRGD peptides labeled using different novel Tc-cores. Q J Nucl Med Mol Imaging. 2007;51:33–41.PubMedGoogle Scholar
  17. 17.
    Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET Focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.PubMedGoogle Scholar
  18. 18.
    Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, et al. Performance measurement of the microPET Foucus 120 scanner. J Nucl Med. 2007;48:1527–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Heppeler A, Froidevaux S, Mäcke H, Jermann E, Behe M, Powell P, Hennig M. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J. 1999;5:1974–81.CrossRefGoogle Scholar
  20. 20.
    Clarke E, Martell A. Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13- and 14-membered tetraazamacrocycles. Inorg Chim Acta. 1991;190:37–46.CrossRefGoogle Scholar
  21. 21.
    Reichert D, Lewis J, Anderson C. Metal complexes as diagnostic tools. Coord Chem Rev. 1999;184:3–66.CrossRefGoogle Scholar
  22. 22.
    Decristoforo C, Mather SJ. 99m-Technetium-labelled peptide-HYNIC conjugates: effects of lipophilicity and stability on biodistribution. Nucl Med Biol. 1999;26:389–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Clemens Decristoforo
    • 1
  • Ignacio Hernandez Gonzalez
    • 1
  • Janette Carlsen
    • 2
  • Marco Rupprich
    • 1
  • Marc Huisman
    • 2
  • Irene Virgolini
    • 1
  • Hans-Jürgen Wester
    • 2
  • Roland Haubner
    • 1
    • 3
  1. 1.Department of Nuclear MedicineMedizinische Universität InnsbruckInnsbruckAustria
  2. 2.Department of Nuclear MedicineTechnische Universität MünchenMunichGermany
  3. 3.Universitätsklinik für NuklearmedizinMedizinische Universität InnsbruckInnsbruckAustria

Personalised recommendations