EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy

  • Francesco Giammarile
  • Arturo Chiti
  • Michael Lassmann
  • Boudewijn Brans
  • Glenn Flux


Meta-iodobenzylguanidine, or Iobenguane, is an aralkylguanidine resulting from the combination of the benzyl group of bretylium and the guanidine group of guanethidine (an adrenergic neurone blocker). It is a noradrenaline (norepinephrine) analogue and so-called “false” neurotransmitter. This radiopharmaceutical, labeled with 131I, could be used as a radiotherapeutic metabolic agent in neuroectodermal tumours, that are derived from the primitive neural crest which develops to form the sympathetic nervous system. The neuroendocrine system is derived from a family of cells originating in the neural crest, characterized by an ability to incorporate amine precursors with subsequent decarboxylation. The purpose of this guideline is to assist nuclear medicine practitioners to evaluate patients who might be candidates for 131I-meta-iodobenzylguanidine to treat neuro-ectodermal tumours, to provide information for performing this treatment and to understand and evaluate the consequences of therapy.


Guidelines Therapy mIBG 



This guideline summarises the views of the Therapy Committee of the EANM and reflects recommendations for which the EANM cannot be held responsible.

The guidelines have been brought to the attention of the National Societies of Nuclear Medicine.

The European Association of Nuclear Medicine has approved guidelines to promote the cost-effective use of high-quality nuclear medicine procedures. These generic recommendations cannot be rigidly applied to all patients in all practice settings. The guidelines should not be deemed inclusive of all proper procedures or exclusive of other procedures reasonably directed to obtaining the same results. Advances in medicine occur at a rapid rate. The date of a guideline should always be considered in determining its current applicability.

The recommendations should be taken in the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.

Last amended: December 2007.


  1. 1.
    Wafelman AR, et al. Radio-iodinated MIBG: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med 1994;21:545-59.CrossRefPubMedGoogle Scholar
  2. 2.
    Weiland DM, Wu J, Brown LE, Manger TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with 131I meta-iodobenzylguanidine. J Nucl Med 1980;21:349-53.Google Scholar
  3. 3.
    Beierwaltes WH. Treatment of neuroblastoma with 131I-MIBG: dosimetric problems and perspectives. Med Pediatr Oncol 1987;15:188-91.CrossRefPubMedGoogle Scholar
  4. 4.
    Giammarile F, Lumbroso J, Ricard M, Aubert B, Hartmann O, et al. Radioiodinated metaiodobenzylguanidine in neuroblastoma: influence of high dose on tumour site detection. Eur J Nucl Med 1995;22(10):1180-3 (Oct).CrossRefPubMedGoogle Scholar
  5. 5.
    Hoefnagel CA, Lewington VJ. MIBG therapy. In: Murray IPC, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment. vol 2. 2nd ed. New York: Churchill Livingstone; 1998. p. 1067-81.Google Scholar
  6. 6.
    Garaventa A, Gambini C, Villavecchia G, et al. Second malignancies in children with neuroblastoma after combined treatment with 131I-MIBG. Cancer 2003;97(5):1332-8 (Mar 1).CrossRefPubMedGoogle Scholar
  7. 7.
    Radiation Protection, European Commission. Radiation protection following iodine-131 therapy (Exposures due to outpatients or discharged inpatients). Radiation Protection 97.Google Scholar
  8. 8.
    Schmidt M, Simon T, Hero B, Eschner W, Dietlein M, Sudbrock F, et al. Is there a benefit of I-131-MIBG therapy FOR in the treatment of children with stage 4 neuroblastoma? Nuklearmedizin 2006;45(4):145-51.PubMedGoogle Scholar
  9. 9.
    Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513-21.CrossRefPubMedGoogle Scholar
  10. 10.
    Matthay KK, Yanik G, Messina J, Quach A, Huberty J, Cheng SC, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 2007;25(9):1054-60 Mar 20.CrossRefPubMedGoogle Scholar
  11. 11.
    Royal HD, Pierson JR, Fletcher JW, et al. Procedure guideline for guideline development. J Nucl Med 1996;37:878-81.PubMedGoogle Scholar
  12. 12.
    Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller ST, Kemshead JT, et al. Phase I/II study of iodine-131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol 1992;10:1889-96.CrossRefPubMedGoogle Scholar
  13. 13.
    Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumour and whole-body dosimetry with tumour response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med 2001;42(11):1713-21. Nov.PubMedGoogle Scholar
  14. 14.
    Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST. Feasibility of dosimetry-based high-dose I-131-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm 2005;20(2):195-9.CrossRefPubMedGoogle Scholar
  15. 15.
    Weiss B, Vora A, Huberty J, Hawkins RA, Matthay KK. Secondary myelodysplastic syndrome and leukemia following 131I-MIBG therapy for relapsed neuroblastoma. J Pediatr Hematol Oncol 2003;25(7):543-7 (Jul).CrossRefPubMedGoogle Scholar
  16. 16.
    Monsieurs MA, Thierens HM, Vral A, Brans B, De Ridder L, Dierckx RA. Patient dosimetry after I-131-MIBG therapy for neuroblastoma and carcinoid tumours. Nucl Med Commun 2001;22(4):367-74.CrossRefPubMedGoogle Scholar
  17. 17.
    Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA. Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol 2002;47(17):3211-23.CrossRefPubMedGoogle Scholar
  18. 18.
    Flux GD, Guy MJ, Papavasileiou P, South C, Chittenden SJ, Flower MA, et al. Absorbed dose ratios for repeated therapy of neuroblastoma with I-131 mIBG. Cancer Biother Radiopharm 2003;18(1):81-7.CrossRefPubMedGoogle Scholar
  19. 19.
    Fielding SL, Flower MA, et al. Dosimetry of iodine 131 metaiodobenzylguanidine for treatment of resistant neuroblastoma: results of a UK study. Eur J Nucl Med 1991;18:308-16.CrossRefPubMedGoogle Scholar
  20. 20.
    Buckley SE, Saran FH, Gaze MN, Chittenden S, Partridge M, Lancaster D, et al. Dosimetry for fractionated I131-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm 2007;22(1):105-12.CrossRefPubMedGoogle Scholar
  21. 21.
    Chittenden S, Pratt B, Pomeroy K, Black P, Long C, Smith N, et al. Optimization of equipment and methodology for whole-body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer Biother Radiopharm 2007;22(2):247-53.CrossRefGoogle Scholar
  22. 22.
    MIRD Committee of Society of Nuclear Medicine. MIRD Dose Estimate Report No. 5. J Nucl Med 1975;16:587.Google Scholar
  23. 23.
    International Committee on Radiological Protection, ICRP Publication 53, Radiation dose to patients from radiopharmaceuticals, Annals of the ICRP, 18, 1-4 (1987).CrossRefGoogle Scholar
  24. 24.
    International Committee on Radiological Protection, ICRP Publication 60, Recommendations of the International Commission on Radiological Protection, Annals of the ICRP, 21, 1-3 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Francesco Giammarile
    • 1
  • Arturo Chiti
    • 2
  • Michael Lassmann
    • 3
  • Boudewijn Brans
    • 4
  • Glenn Flux
    • 5
  1. 1.CH Lyon Sud, EA 3738HCL, UCBLPierre Benite CedexFrance
  2. 2.U.O. di Medicina NucleareIstituto Clinico HumanitasRozzano (MI)Italy
  3. 3.Klinik und Poliklinik für NuklearmedizinUniversität WürzburgWürzburgGermany
  4. 4.Department of Nuclear MedicineUniversity Medical Center MaastrichtMaastrichtThe Netherlands
  5. 5.Royal Marsden HospitalSurreyUK

Personalised recommendations