EANM/ESC guidelines for radionuclide imaging of cardiac function

  • B. Hesse
  • T. B. Lindhardt
  • W. Acampa
  • C. Anagnostopoulos
  • J. Ballinger
  • J. J. Bax
  • L. Edenbrandt
  • A. Flotats
  • G. Germano
  • T. Gmeiner Stopar
  • P. Franken
  • A. Kelion
  • A. Kjaer
  • D. Le Guludec
  • M. Ljungberg
  • A. F. Maenhout
  • C. Marcassa
  • J. Marving
  • F. McKiddie
  • W. M. Schaefer
  • L. Stegger
  • R. Underwood
Guidelines

Abstract

Radionuclide imaging of cardiac function represents a number of well-validated techniques for accurate determination of right (RV) and left ventricular (LV) ejection fraction (EF) and LV volumes. These first European guidelines give recommendations for how and when to use first-pass and equilibrium radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes, LV regional function, LV diastolic function, reports and image display and reference values from the literature of RVEF, LVEF and LV volumes. If specific recommendations given cannot be based on evidence from original, scientific studies, referral is given to “prevailing or general consensus”. The guidelines are designed to assist in the practice of referral to, performance, interpretation and reporting of nuclear cardiology studies for the evaluation of cardiac performance.

Keywords

Nuclear imaging EANM/ESC guidelines Cardiac function 

Abbreviations

ACD

acid citrate dextrose

CAD

coronary artery disease

cMRI

cardiac magnetic resonance imaging

ECG

electrocardiogram

ECT

Emory Cardiac Toolbox

ED

end-diastolic

EDV

end-diastolic volume

ES

end-systolic

EF

ejection fraction

ERNV

equilibrium radionuclide ventriculography

ESV

end-systolic volume

FP

first pass

FPRNV

first-pass radionuclide ventriculography

HSA

human serum albumin

i.v.

intravenous

LAO

left anterior oblique

LBBB

left bundle branche block

LEGP

low energy general purpose

LEHR

low energy high resolution

LEHS

low energy high sensitivity

LPO

left posterior oblique

LV

left ventricle

LVV

left ventricular volume

LVEF

left ventricular ejection fraction

MI

myocardial infarction

MPS

myocardial perfusion scintigraphy

NSTEMI

non-ST elevation acute myocardial infarction

PFR

peak filling rate

PFRSV

PFR normalised to stroke volume

QGS

quantitative gated SPECT

RAO

right anterior oblique

RBC

red blood cells

RNV

radionuclide ventriculography

ROI

region-of-interest

RV

right ventricle

STEMI

ST elevation acute myocardial infarction

TAC

time-activity curve

TID

transient ischaemic dilatation

TPFR

time to peak filling rate

WM

wall motion

WTh

wall thickening

References

  1. 1.
    White HD, Norris RM, Brown MA, Takayama M, Maslowski A, Bass NM, et al. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. N Engl J Med 1987;317:850-5.PubMedCrossRefGoogle Scholar
  2. 2.
    Mahmarian JJ, Shaw LJ, Filipchuk NG, Dakik HA, Iskander SS, Ruddy TD, et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion SPECT in identifying a low-risk group for early hospital discharge after acute myocardial infarction. J Am Coll Cardiol 2006;48:2448-57.PubMedCrossRefGoogle Scholar
  3. 3.
    Schaadt B, Kelbaek H. Age and left ventricular ejection fraction identify patients with advanced breast cancer at high risk for development of epirubicin-induced heart failure. J Nucl Cardiol 1997;4:494-501.PubMedCrossRefGoogle Scholar
  4. 4.
    Klocke FJ, Baird MG, Bateman TM, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318-33.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown KA, Heller GV, Landin RS, Shaw LJ, Beller GA, Pasquale MJ, et al. Early dipyridamole (99m)Tc-sestamibi single photon emission computed tomographic imaging 2 to 4days after acute myocardial infarction predicts in-hospital and postdischarge cardiac events: comparison with submaximal exercise imaging. Circulation 1999;100:2060-6.PubMedCrossRefGoogle Scholar
  6. 6.
    Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol 1999;33:661-9.PubMedCrossRefGoogle Scholar
  7. 7.
    Underwood SR, Godman B, Salvani S, Ogle JR, Ell PJ. Economics of myocardial perfusion imaging in Europe—the EMPIRE study. Eur Heart J 1999;20:157-66.PubMedCrossRefGoogle Scholar
  8. 8.
    Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 2004;31:261-91.PubMedCrossRefGoogle Scholar
  9. 9.
    Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035-42.PubMedCrossRefGoogle Scholar
  10. 10.
    Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877-83.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitani I, Jain D, Joska TM, Burtness B, Zaret BL. Doxorubicin cardiotoxicity: prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol 2003;10:132-9.PubMedCrossRefGoogle Scholar
  12. 12.
    Ewer MS, Vooletich MT, Durand J-B, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 2005;23:7820-6.PubMedCrossRefGoogle Scholar
  13. 13.
    Kies P, Bootsma M, Bax J, Schalij MJ, van der Wall EE. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: screening, diagnosis, and treatment. Heart Rhythm 2006;3:225-34.PubMedCrossRefGoogle Scholar
  14. 14.
    Borer JS, Hochreiter C, Herrold EM, Supino P, Aschermann M, Wencker D, et al. Prediction of indications for valve replacement among asymptomatic or minimally symptomatic patients with chronic aortic regurgitation and normal left ventricular performance. Circulation 1998;97:525-34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.PubMedCrossRefGoogle Scholar
  16. 16.
    AmerscanTM Stannous Agent, Technical leaflet. Amersham, 2001.Google Scholar
  17. 17.
    UltraTag RBC, Summary of product characteristics. Mallinckrodt, 2001.Google Scholar
  18. 18.
    Technescan PYP. Summary of product characteristics. Mallinckrodt, 2000.Google Scholar
  19. 19.
    Ellis BL, Sampson CB. Radiolabelling of blood cells—theory and practice. In: Sampson CB, editor. Textbook of radiopharmacy theory and practice. 3rd ed. Amsterdam: Gordon and Breach Science; 1999. p. 83-104.Google Scholar
  20. 20.
    Sampson CB. Complications and difficulties in radiolabelling blood cells: a review. Nucl Med Commun 1996;17:648-58.PubMedCrossRefGoogle Scholar
  21. 21.
    Zanelli GD. Effect of certain drugs used in the treatment of cardiovascular disease on the in-vitro labelling of red blood cells with 99mTc. Nucl Med Commun 1982;3:155-61.CrossRefGoogle Scholar
  22. 22.
    International Atomic Energy Agency. Applying radiation safety standards in nuclear medicine no. 40. IAEA safety related publications. Appendix VI: guidance levels for diagnostic procedures. Vienna: IAEA; 2005. p. 101-5.Google Scholar
  23. 23.
    Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2007;34:796-8.PubMedCrossRefGoogle Scholar
  24. 24.
    Millar AM, Wathen CG, Muir AL. Failure in labelling of red blood cells with 99mTc: interaction between intravenous cannulae and stannous pyrophosphate. Eur J Nucl Med 1983;8:502-4.PubMedCrossRefGoogle Scholar
  25. 25.
    Pauwels EKJ, Feitsma RIJ, Blom J. Influence of adriamycin on red blood cell labelling; A pitfall in scintigraphic blood pool imaging. Nucl Med Commun 1983;4:290-5.CrossRefGoogle Scholar
  26. 26.
    Sampson CB. Adverse reactions and drug interactions with radiopharmaceuticals. Drug Safety 1993;8:280-94.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee HB, Wexler JP, Scharf SC, Blaufox MD. Pharmacologic alterations in Tc-99m binding by red blood cells: concise communication. J Nucl Med 1983;24:397-401.PubMedGoogle Scholar
  28. 28.
    International Commission on Radiological Protection. ICRP publication 80: radiation dose to patients from radiopharmaceuticals. Annals of the ICRP, vol. 28. Oxford: Pergamon; 1999. p. 61.Google Scholar
  29. 29.
    Mountford PJ, Lazarus CR, Edwards S. Radiopharmaceuticals. In: Bennet PN, editor. Drugs and human lactation. Amsterdam: Elsevier Science; 1996. p. 609-77.CrossRefGoogle Scholar
  30. 30.
    Ahlgren L, Ivarsson S, Johansson L, Mattsson S, Nosslin B. Excretion of radionuclides in human breast milk after the administration of radiopharmaceuticals. J Nucl Med 1985;26:1085-90.PubMedGoogle Scholar
  31. 31.
    Rubow S, Klopper J, Wasserman H, Baard B, van Niekerk M. The excretion of radiopharmaceuticals in human breast milk: additional data and dosimetry. Eur J Nucl Med 1994;21:144-53.PubMedCrossRefGoogle Scholar
  32. 32.
    International Atomic Energy Agency. Applying radiation safety standards in nuclear medicine No. 40. IAEA safety related publications, Appendix IV: Cessation of breast feeding. Vienna: IAEA; 2005. p. 97-9.Google Scholar
  33. 33.
    Administration of radioactive substances advisory committee. Notes for guidance on the clinical administration of radiopharmaceuticals and use of sealed radioactive sources. National Radiation Protection Board (UK), 2006.Google Scholar
  34. 34.
    Nowotnik DP, Verbruggen AM. Practical and physiochemical aspects of the preparation of 99mTc-labelled radiopharmaceuticals. In: Sampson CB, editor. Textbook of radiopharmacy theory and practice. 3rd ed. Amsterdam: Gordon and Breach Science Publishers; 1999. p. 37-56.Google Scholar
  35. 35.
    Vasculocis, Summary of product characteristics. CIS Biointernational; 1996.Google Scholar
  36. 36.
    Technescan HSA, Summary of product characteristics. Mallinckrodt; 2000.Google Scholar
  37. 37.
    Silberstein EB, Ryan J. Prevalence of adverse reactions in nuclear medicine. Pharmacopeia Committee of the Society of Nuclear Medicine. J Nucl Med 1996;37:185-92, 1064-7.PubMedGoogle Scholar
  38. 38.
    Borer JS. Measurement of ventricular function and volume. In: George A, Beller MD, Zaret BL, editors. Nuclear cardiology: state of the art and future directions. 2nd ed. St. Louis: Mosby; 1999. p. 201-15.Google Scholar
  39. 39.
    Nichols K, DePuey EG, Gooneratne N, Salensky H, Friedman M, Cochoff S. First-pass ventricular ejection fraction using a single-crystal nuclear camera. J Nucl Med 1994;35:1292-300.PubMedGoogle Scholar
  40. 40.
    Williams KA. Measurement of ventricular function with scintigraphic techniques: part I-imaging hardware, radiopharmaceuticals, and first-pass radionuclide angiography. J Nucl Cardiol 2005;12:86-95.PubMedCrossRefGoogle Scholar
  41. 41.
    Marving J, Høilund-Carlsen PF, Chraemmer-Jørgensen B, Gadsbøll N. Are right and left ventricular ejection fractions equal? Ejection fractions in normal subjects and in patients with first acute myocardial infarction. Circulation 1985;72:502-14.PubMedCrossRefGoogle Scholar
  42. 42.
    Friedman JD, Berman DS, Borges-Neto S, Hayes SW, Johnson LL, Nichols KJ, et al. Quality Assurance Committee of the American Society of Nuclear Cardiology. First-pass radionuclide angiography. J Nucl Cardiol 2006;13:42-55.CrossRefGoogle Scholar
  43. 43.
    Hecht HS, Josephson MA, Hopkins JM, Singh BN. Reproducibility of ERNV in patients with coronary artery disease: response of left ventricular ejection fraction and regional wall motion to supine bicycle exercise. Am Heart J 1982;104:567-74.PubMedCrossRefGoogle Scholar
  44. 44.
    Iftikhar I, Koutelou M, Mahmarian JJ, Verani MS. Simultaneous perfusion tomography and radionuclide angiography during dobutamine stress. J Nucl Med 1996;37:1306-10.PubMedGoogle Scholar
  45. 45.
    Cates CU, Kronenberg MW, Collins HW, Sandler MP. Dipyridamole radionuclide ventriculography: a test with high specificity for severe coronary artery disease. J Am Coll Cardiol 1989;13:841-51.PubMedCrossRefGoogle Scholar
  46. 46.
    Dymond DS, Foster C, Grenier RP, Carpenter J, Schmidt DH. Peak exercise and immediate postexercise imaging for the detection of left ventricular functional abnormalities in coronary artery disease. Am J Cardiol 1984;53:1532-7.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamaki N, Yasuda T, Moore R, Gill JB, Coucher CA, Hutter AM, et al. Continuous monitoring of left ventricular function by an ambulatory radionuclide detector in patients with coronary artery disease. J Am Coll Cardiol 1988;2:669-79.CrossRefGoogle Scholar
  48. 48.
    Pace L, Cuocolo A, Stefano ML, Nappi A, Nicolai E, Imbriaco M, et al. Left ventricular systolic and diastolic function measurements using an ambulatory radionuclide monitor: effects of different time averaging on accuracy. J Nucl Med 1993;34:1602-6.PubMedGoogle Scholar
  49. 49.
    Hacker M, Hoyer X, Kupzyk S, Fougere CL, Kois J, Stempfle HU, et al. Clinical validation of the gated blood pool SPECT QBS((R)) processing software in congestive heart failure patients: correlation with MUGA, first-pass RNV and 2D-echocardiography. Int J Cardiovasc Imaging 2006;22:407-16.PubMedCrossRefGoogle Scholar
  50. 50.
    Daou D, Van Kriekinge SD, Coaguila C, Lebtahi R, Fourme T, Sitbon O, et al. Automatic quantification of right ventricular function with gated blood pool SPECT. J Nucl Cardiol 2004;11:293-304.PubMedCrossRefGoogle Scholar
  51. 51.
    Kjaer A, Lebech AM, Hesse B, Petersen CL. Right-sided cardiac function in healthy volunteers measured by first-pass radionuclide ventriculography and gated blood-pool SPECT: comparison with cine MRI. Clin Physiol Funct Imaging 2005;25:344-9.PubMedCrossRefGoogle Scholar
  52. 52.
    Nichols K, Saouaf R, Ababneh AA, Barst RJ, Rosenbaum MS, Groch MW, et al. Validation of SPECT equilibrium radionuclide angiographic right ventricular parameters by cardiac magnetic resonance imaging. J Nucl Cardiol 2002;9:153-60.PubMedCrossRefGoogle Scholar
  53. 53.
    De BP, Nichols K, Vandenberghe S, Segers P, De WO, Van de WC, et al. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom. J Nucl Med 2003;44:967-72.Google Scholar
  54. 54.
    De Bondt P, De Winter O, De Sutter J, Dierckx RA. Agreement between four available algorithms to evaluate global systolic left and right ventricular function from tomographic radionuclide ventriculography and comparison with planar imaging. Nucl Med Commun 2005;26:351-9.PubMedCrossRefGoogle Scholar
  55. 55.
    Akinboboye O, Nichols K, Wang Y, Dim UR, Reichek N. Accuracy of radionuclide ventriculography assessed by magnetic resonance imaging in patients with abnormal left ventricles. J Nucl Cardiol 2005;12:418-27.PubMedCrossRefGoogle Scholar
  56. 56.
    Chin BB, Bloomgarden DC, Xia W, Kim HJ, Fayad ZA, Ferrari VA, et al. Right and left ventricular volume and ejection fraction by tomographic gated blood-pool scintigraphy. J Nucl Med 1997;38:942-8.PubMedGoogle Scholar
  57. 57.
    Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.PubMedGoogle Scholar
  58. 58.
    Ficaro EP, Quaife RA, Kritzman JN, Corbett JR. Accuracy and reproducibility of 3D-MSPECT for estimating left ventricular ejection fraction in patients with severe perfusion abnormalities (abstract). Circulation 1999;100(Suppl. 1):I26.Google Scholar
  59. 59.
    Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 1999;40:650-9.PubMedGoogle Scholar
  60. 60.
    Schaefer WM, Lipke C, Standke D, Kuehl HP, Nowak B, Kaiser HJ, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med 2005;46:1256-63.PubMedGoogle Scholar
  61. 61.
    Kubo N, Mabuchi M, Katoh C, Morita K, Tsukamoto E, Morita Y, et al. Accuracy and reproducibility of left ventricular function from quantitative, gated, single photon emission computed tomography using dynamic myocardial phantoms: effect of pre-reconstruction filters. Nucl Med Commun 2002;23:529-36.PubMedCrossRefGoogle Scholar
  62. 62.
    Wheat JM, Currie GM. QGS ejection fraction reproducibility in gated SPECT comparing pre-filtered and post-filtered reconstruction. Nucl Med Commun 2006;27:57-9.PubMedCrossRefGoogle Scholar
  63. 63.
    Hashimoto J, Kubo A, Iwasaki R, Iwanaga S, Mitamura H, Ogawa S, et al. Gated single-photon emission tomography imaging protocol to evaluate myocardial stunning after exercise. Eur J Nucl Med 1999;26:1541-6.PubMedCrossRefGoogle Scholar
  64. 64.
    Schaefer WM, Lipke CS, Nowak B, Kaiser HJ, Reinartz P, Buecker A, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: comparison with cardiac MRI. J Nucl Med 2004;45:74-9.PubMedGoogle Scholar
  65. 65.
    Slart RH, Bax JJ, de Jong RM, de Boer J, Lamb HJ, Mook PH, et al. Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease. J Nucl Med 2004;45:176-82.PubMedGoogle Scholar
  66. 66.
    Flotats A, Serra-Grima R, Camacho V, Mena E, Borras X, Estorch M, et al. Left ventricular end-diastolic volume is decreased at maximal exercise in athletes with marked repolarisation abnormalities: a continuous radionuclide monitoring study. Eur J Nucl Med Mol Imaging 2005;32:203-10.PubMedCrossRefGoogle Scholar
  67. 67.
    Pfisterer N, Regenass S, Müller-Brand J, Burkart F. Ambulatory scintigraphic assessment of transient changes in left ventricular function: a new method for detection of silent myocardial ischaemia. Eur Heart J 1988;9(Suppl N):98-103.PubMedCrossRefGoogle Scholar
  68. 68.
    Yang LD, Bairey MN, Berman DS, Nichols KJ, Odom-Maryon T, Rozansky A. Accuracy and reproducibility of left ventricular ejection fraction measurements using an ambulatory radionuclide left ventricular function monitor. J Nucl Med 1991;32:796-802.PubMedGoogle Scholar
  69. 69.
    Pace L, Cuocolo A, Nappi A, Nicolai E, Trimarco B, Salvatore M. Accuracy and repeatability of left ventricular systolic and diastolic function measurements using an ambulatory radionuclide monitor. Eur J Nucl Med 1992;19:800-6.PubMedCrossRefGoogle Scholar
  70. 70.
    Jain D, Joska T, Lee FA, Burg M, Lampert R, Zaret BL. Day-to-day reproducibility of mental stress-induced abnormal left ventricular function response in patients with coronary artery disease and its relationship to autonomic activation. J Nucl Cardiol 2001;8:347-55.PubMedCrossRefGoogle Scholar
  71. 71.
    Tamaki N, Gill JB, Moore RH, Yasuda T, Boucher CA, Strauss HW. Cardiac response to daily activities and exercise in normal subjects assessed by an ambulatory ventricular function monitor. Am J Cardiol 1987;59:1164-9.PubMedCrossRefGoogle Scholar
  72. 72.
    Kayden DS, Remetz MS, Cabin HS, Deckelbaum LI, Cleman MW, Wackers FJ, et al. Validation of continuous radionuclide left ventricular function monitoring in detecting silent myocardial ischemia during balloon angioplasty of the left anterior descending artery. Am J Cardiol 1991;67:1339-43.PubMedCrossRefGoogle Scholar
  73. 73.
    Bairey CN, de Yang L, Berman DS, Rozanski A. Comparison of physiologic ejection fraction responses to activities of daily living: implications for clinical testing. J Am Coll Cardiol 1990;16:847-54.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolz DE, Flores AR, Grandis DJ, Orie JE, Schulman DS. Abnormal left ventricular ejection fraction response to mental stress and exercise in cardiomyopathy. J Nucl Cardiol 1995;2:144-50.PubMedCrossRefGoogle Scholar
  75. 75.
    Fearnow EC 3rd, Stanfield JA, Jaszczak RJ, Harris CC, Coleman RE. Factors affecting ventricular volumes determined by a count-based equilibrium method. J Nucl Med 1985;26:1042-7.PubMedGoogle Scholar
  76. 76.
    Wieshammer S, Hetzel M, Hetzel J, Henze E, Clausen M, Hombach V. Reproducibility of left ventricular volume measurements at rest and during bicycle exercise in patients with congestive heart failure: A combined radionuclide and haemodynamic study. Nucl Med Commun 1996;17:591-5.PubMedCrossRefGoogle Scholar
  77. 77.
    Seldin DW, Esser PD, Nichols AB, Ratner SJ, Alderson PO. Left ventricular volume determination from scintigraphy and digital angiography by a semi-automatic geometric method. Radiology 1983;149:809-13.PubMedCrossRefGoogle Scholar
  78. 78.
    Gal JA, Grenier RP, Port SC, Dymond DS, Schmidt DH. Left ventricular volume calculation using a count-based ratio method applied to first-passradionucide angiography. J Nucl Med 1992;33:2124-32.PubMedGoogle Scholar
  79. 79.
    Massardo T, Gal RA, Grenier RP, Schmidt DH, Port SC. Left ventricular volume calculation using a count based ratio method applied to multigated radionuclide angiography. J Nucl Med 1990;31:450-6.PubMedGoogle Scholar
  80. 80.
    Thorley PJ, Sheard KL, Rees MR. A comparison of methods for estimating left ventricular from radionuclide ventriculography. Physiol Meas 1993;14:23-32.PubMedCrossRefGoogle Scholar
  81. 81.
    Nichols K, Humayun N, De Bondt P, Vandenberghe S, Akinboboye OO, Bergmann SR. Model dependence of gated blood pool SPECT ventricular function measurements. J Nucl Cardiol 2004;11:282-92.PubMedCrossRefGoogle Scholar
  82. 82.
    De Bondt P, Nichols K, Vandenberghe S, Segers P, De Winter O, Van de Wiele C, et al. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom. J Nucl Med 2003;44:967-72.PubMedGoogle Scholar
  83. 83.
    Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: Risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42:831-7.PubMedGoogle Scholar
  84. 84.
    Goris ML, Thompson C, Malone LJ, Franken PR. Modelling the integration of myocardial regional perfusion and function. Nucl Med Commun 1994;15:9-20.PubMedCrossRefGoogle Scholar
  85. 85.
    Everaert H, Franken PR, Flamen P, Goris M, Momen A, Bossuyt A. Left ventricular ejection fraction from gated SPET myocardial perfusion studies: a method based on the radial distribution of count rate density across the myocardial wall. Eur J Nucl Med 1996;23:1628-33.PubMedCrossRefGoogle Scholar
  86. 86.
    Faber TL, Stokely EM, Peshock RM, Corbett JR. A model-based four-dimensional left-ventricular surface detector. IEEE Trans Med Imag 1991;10:321-9.CrossRefGoogle Scholar
  87. 87.
    Iskandrian AE, Germano G, VanDecker W, Ogilby JD, Wolf N, Mintz R, et al. Validation of left ventricular volume measurements by gated SPECT Tc-99m-labeled sestamibi imaging. J Nucl Cardiol 1998;5:574-8.PubMedCrossRefGoogle Scholar
  88. 88.
    Achtert AD, King MA, Dahlberg ST, Pretorius PH, LaCroix KJ, Tsui BM. An investigation of the estimation of ejection fractions and cardiac volumes by a quantitative gated SPECT software package in simulated gated SPECT images. J Nucl Cardiol 1998;5:144-52.PubMedCrossRefGoogle Scholar
  89. 89.
    Lipke CS, Kuhl HP, Nowak B, Kaiser HJ, Reinartz P, Koch KC, et al. Validation of 4D-MSPECT and QGS for quantification of left ventricular volumes and ejection fraction from gated Tc-99m-MIBI SPET: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2004;31:482-90.PubMedCrossRefGoogle Scholar
  90. 90.
    Thorley PJ, Smith JM. Repeatability of left ventricular ejection fraction and volume measurement for (99)mTc-tetrofosmin gated single photon emission computed tomography (SPECT). Nucl Med Commun 2005;26:345-9.PubMedCrossRefGoogle Scholar
  91. 91.
    Mazzanti M, Germano G, Kiat H, Kavanagh PB, Alexanderson E, Friedman JD, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996;27:1612-20.PubMedCrossRefGoogle Scholar
  92. 92.
    Bestetti A, Di Leo C, Alessi A, Triulzi A, Tagliabue L, Tarolo GL. Post-stress end-systolic left ventricular dilation: a marker of endocardial post-ischemic stunning. Nucl Med Commun 2001;22:685-93.PubMedCrossRefGoogle Scholar
  93. 93.
    Anagnostopoulos C, Harbinson M, Kelion A, Kundley K, Loong CY, Notghi A, et al. Procedure guidelines for radionuclide myocardial perfusion imaging. Heart 2004;90(Suppl 1):i1-10.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Scheiner J, Sinusas A, Wittry MD, Royal HD, Machac J, Balon HR, et al. Society of Nuclear Medicine procedure guideline for gated equilibrium radionuclide ventriculography 2002. Society of Nuclear Medicine procedure guidelines, cardiac: gated equilibrium radionuclide ventriculography 3.0. http://www.snm.org.
  95. 95.
    Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 2006;13:e56-79.PubMedCrossRefGoogle Scholar
  96. 96.
    Brateman L, Buckley K, Keim SG, Wargovich TJ, Williams CM. Left ventricular regional wall motion assessment by radionuclide ventriculography: a comparison of cine display with Fourier imaging. J Nucl Med 1991;32:777-82.PubMedGoogle Scholar
  97. 97.
    Walton S, Yiannikas J, Jarritt PH, Brown NJ, Swanton RH, Ell PJ. Phasic abnormalities of left ventricular emptying in coronary artery disease. Br Heart J 1981;46:245-53.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Underwood SR, Walton S, Laming PJ, Ell PJ, Emanuel RW, Swanton RH. Patterns of ventricular contraction in patients with conduction abnormality studied by radionuclide angiocardiography. Br Heart J 1984;51:568-74.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Muramatsu T, Matsumoto K, Nishimura S. Efficacy of the phase images in Fourier analysis using gated cardiac POOL-SPECT for determining the indication for cardiac resynchronization therapy. Circ J 2005;69:1521-6.PubMedCrossRefGoogle Scholar
  100. 100.
    Metcalfe MJ, Norton MY, Jennings K, Walton S. Improved detection of abnormal left ventricular wall motion using tomographic radionuclide ventriculography compared with planar radionuclide and single plane contrast ventriculography. Brit J Radiol 1993;66:986-93.PubMedCrossRefGoogle Scholar
  101. 101.
    Abidov A, Germano G, Hachamovitch R, Berman DS. Gated SPECT in assessment of regional ad global left ventricular function: major tool of modern nuclear imaging. J Nucl Cardiol 2006;13:261-79.PubMedCrossRefGoogle Scholar
  102. 102.
    Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007;28:2539-50.PubMedCrossRefGoogle Scholar
  103. 103.
    Wackers FJTh. Equilibrium radionuclide angiograhy. In: Gerson MC, editor. Cardiac nuclear medicine. 3rd ed. New York: McGraw Hill; 1997. p. 315-45.Google Scholar
  104. 104.
    Arrighi JA, Soufer R. Left ventricular diastolic function: physiology. Methods of assessment, and clinical significance. J Nucl Cardiol 1995;2:525-43.PubMedCrossRefGoogle Scholar
  105. 105.
    Clements IP, Sinak LJ, Gibbons RJ, Brown ML, O’Connor MKl. Determination of diastolic function by radionuclide ventriculography. Mayo Clin Proc 1990;65:1007-19.PubMedCrossRefGoogle Scholar
  106. 106.
    Bonow RO, Vitale DF, Bacharach SL, Maron BJ, Green MV. Effects of aging on asynchronus left ventricular regional function and global ventricular filling in normal human subjects. J Am Coll Cardiol 1988;11:50-8.PubMedCrossRefGoogle Scholar
  107. 107.
    Bonow RO, Bacharach SL, Green MV, Kent KM, Rosing DR, Lipson LC, et al. Impaired left ventricular diastolic filling in patients with coronary artery disease: assessment with radionuclide angiography. Circulation 1981;64:315-23.PubMedCrossRefGoogle Scholar
  108. 108.
    Parker JA, Uren RF, Jones AG, Maddox DE, Zimmerman RE, Neill JM, et al. Radionuclide left ventriculography with the slant hole collimator. J Nucl Med 1977;18:848-51.PubMedGoogle Scholar
  109. 109.
    Gunter DL. Collimator Design for Nuclear Medicine. In: Wernick M, Aarsvold J, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego, London: Elsevier Academic; 2004. p. 153-68.CrossRefGoogle Scholar
  110. 110.
    Liu YH, Lam PT, Sinusas AJ, Wackers FJ. Differential effect of 180 degrees and 360 degrees acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms. J Nucl Med 2002;43:1115-24.PubMedGoogle Scholar
  111. 111.
    Friedman JD, Berman DS, Kiat H, Bietendorf J, Hyun M, Van Train KF, et al. Rest and treadmill exercise first-pass radionuclide ventriculography: validation of left ventricular ejection fraction measurements. J Nucl Cardiol 1994;1:382-8.PubMedCrossRefGoogle Scholar
  112. 112.
    Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844-51.PubMedGoogle Scholar
  113. 113.
    Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for sumultaneous emission and transmission measurements in SPECT. J Nucl Med 1993;34:1752-60.PubMedGoogle Scholar
  114. 114.
    Celler A, Sitek A, Stoub E, Hawman P, Harrop R, Lyster D. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med 1998;39:2183-9.PubMedGoogle Scholar
  115. 115.
    Hasegawa BH, Lang TF, Brown JK, Gingold EL, Reilly SM, Blankespoor SC, et al. Object-specific attenuation correction for SPECT with correlated dual-energy X-ray CT. IEEE Trans Nucl Sci 1993;40:1242-52.CrossRefGoogle Scholar
  116. 116.
    Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 1996;43:2263-74.CrossRefGoogle Scholar
  117. 117.
    Schelbert HR, Verba JW, Johnson AD, Brock GW, Alazraki NP, Rose FJ, et al. Nontraumatic determination of left ventricular ejection fraction by radionuclide angiocardiography. Circulation 1975;51:902-9.PubMedCrossRefGoogle Scholar
  118. 118.
    Germano G, Kavanagh PB, Su HT, Mazzanti M, Kiat H, Hachamovitch R, et al. Automatic reorientation of 3-dimensional transaxial myocardial perfusion SPECT images. J Nucl Med 1995;36:1107-14.PubMedGoogle Scholar
  119. 119.
    Mullick R, Ezquierra NF. Automatic determination of left ventricular orientation from SPECT data. IEEE Trans Med Imag 1995;14:88-99.CrossRefGoogle Scholar
  120. 120.
    Ratib O, Henze E, Schon H, Schelbert HR. Phase analysis of radionuclide ventriculograms for the detection of coronary artery disease. Am Heart J 1982;104:1-12.PubMedCrossRefGoogle Scholar
  121. 121.
    Wu J, Takeda T, Toyama H, Ajisaka R, Masuoka T, Watanabe S, et al. Phase changes caused by hyperventilation stress in spastic angina pectoris analyzed by first-pass radionuclide ventriculography. Ann Nucl Med 1999;13:13-8.PubMedCrossRefGoogle Scholar
  122. 122.
    Faber TL, Stokely EM, Templeton GH, Akers MS, Parkey RW, Corbett JR. Quantification of three-dimensional left ventricular segmental wall motion and volumes from gated tomographic radionuclide ventriculograms. J Nucl Med 1989;30:638-49.PubMedGoogle Scholar
  123. 123.
    Bartlett ML, Srinivasan G, Barker WC, Kitsiou AN, Dilsizian V, Bacharach SL. Left ventricular ejection fraction: comparison of results from planar and SPECT gated blood-pool studies. J Nucl Med 1996;37:1795-9.PubMedGoogle Scholar
  124. 124.
    van Kriekinge SD, Berman DS, Germano G. Automatic quantification of left ventricular ejection fraction from gated blood pool SPECT. J Nucl Cardiol 1999;6:498-506.PubMedCrossRefGoogle Scholar
  125. 125.
    Links JM, Becker LC, Shindledecker JG, Guzman P, Burow RD, Nickoloff EL, et al. Measurement of absolute left ventricular volume from gated blood-pool studies. Circulation 1982;65:82-91.PubMedCrossRefGoogle Scholar
  126. 126.
    Stegger L, Biedenstein S, Schäfers KP, Schober O, Schäfers MA. Elastic surface contour detection for the measurement of ejection fraction in myocardial perfusion SPET. Eur J Nucl Med 2001;28:48-55.PubMedCrossRefGoogle Scholar
  127. 127.
    Pfisterer ME, Battler A, Zaret BL. Range of normal values for left and right ventricular ejection fraction at rest and during exercise assessed by radionuclide angiocardiography. Eur Heart J 1985;6:647-55.PubMedCrossRefGoogle Scholar
  128. 128.
    Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, et al. Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume. The Dallas Heart Study. Circulation 2006;113:1597-604.PubMedCrossRefGoogle Scholar
  129. 129.
    Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol 2000;7:661-8.PubMedCrossRefGoogle Scholar
  130. 130.
    Rozanski A, Nichols K, Yao SS, Malholtra S, Cohen R, DePuey EG. Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gates SPECT. J Nucl Med 2000;41:1445-50.PubMedGoogle Scholar
  131. 131.
    Sharir T, Kang X, Germano G, Bax JJ, Shaw LJ, Gransar H, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol 2006;13:495-506.PubMedCrossRefGoogle Scholar
  132. 132.
    Lum DP, Coel MN. Comparison of automatic quantification software for the measurement of ventricular volume and ejection fraction in gated myocardial perfusion SPECT. Nucl Med Commun 2003;24:259-66.PubMedCrossRefGoogle Scholar
  133. 133.
    Navare SM, Wackers FJ, Liu YH. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction. Eur J Nucl Med Mol Imaging 2003;30:1330-7.PubMedCrossRefGoogle Scholar
  134. 134.
    Ramakrishna G, Miller TD, Hodge DO, O’Connor MK, Gibbons RJ. Differences in left ventricular ejection fraction and volumes measured at rest and poststress by gated sestamibi SPECT. J Nucl Cardiol 2006;13:668-74.PubMedCrossRefGoogle Scholar
  135. 135.
    Higgins JP, Higgins JA, Williams G. Stress-induced abnormalities in myocardial perfusion imaging that are not related to perfusion but are of diagnostic and prognostic importance. Eur J Nucl Med Mol Imaging 2007;34:584-95.PubMedCrossRefGoogle Scholar
  136. 136.
    Underwood SR, Walton S, Laming PJ, Ell PJ, Emanuel RW, Swanton RH. Quantitative phase analysis in the assessment of coronary artery disease. Br Heart J 1989;61:14-22.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: a prognostic study with fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002;40:2022-30.PubMedCrossRefGoogle Scholar
  138. 138.
    Marcassa C, Campini R, Verna E, Ceriani L, Giannuzzi P. Assessment of cardiac asynchrony by radionuclide phase analysis. Correlation with ventricular function in patients with narrow or prolonged QRS Interval. Eur J Heart Failure 2007;9:484-90.CrossRefGoogle Scholar
  139. 139.
    Wackers F. Intersocietal Commission for the Accreditation of Nuclear Medicine Laboratories (ICANL) position statement on standardization and optimization of nuclear cardiology reports. J Nucl Cardiol 2000;7:397-400.PubMedCrossRefGoogle Scholar
  140. 140.
    Cerqueira MD. The user-friendly nuclear cardiology reports: what needs to be considered and what is included. J Nucl Cardiol 1996;3:350-5.PubMedCrossRefGoogle Scholar
  141. 141.
    Hendel RC, Wackers FJ, Berman DS, Ficaro E, DePuey EG, Klein L, et al. American Society of Nuclear Cardiology consensus statement: reporting of radionuclide myocardial perfusion imaging studies. J Nucl Cardiol 2006;13:e152-6.PubMedCrossRefGoogle Scholar

Copyright information

© EANM 2008

Authors and Affiliations

  • B. Hesse
    • 1
  • T. B. Lindhardt
    • 2
  • W. Acampa
    • 3
  • C. Anagnostopoulos
    • 4
  • J. Ballinger
    • 5
  • J. J. Bax
    • 6
  • L. Edenbrandt
    • 7
  • A. Flotats
    • 8
  • G. Germano
    • 9
  • T. Gmeiner Stopar
    • 10
  • P. Franken
    • 11
  • A. Kelion
    • 12
  • A. Kjaer
    • 1
  • D. Le Guludec
    • 13
  • M. Ljungberg
    • 14
  • A. F. Maenhout
    • 4
  • C. Marcassa
    • 15
  • J. Marving
    • 1
  • F. McKiddie
    • 16
  • W. M. Schaefer
    • 17
  • L. Stegger
    • 18
  • R. Underwood
    • 19
  1. 1.Department of Clinical Physiology and Nuclear MedicineUniversity Hospital of CopenhagenCopenhagenDenmark
  2. 2.Department of CardiologyHilleroed HospitalHilleroedDenmark
  3. 3.Department of Biomorphological and Functional Sciences, Institute of Biostructure and Bioimages of the National Council of ResearchUniversity of Naples Federico IINaplesItaly
  4. 4.Department of Nuclear MedicineRoyal Brompton HospitalLondonUK
  5. 5.Department of Nuclear MedicineGuy’s Hospital-Guy’s and St. Thomas’ Foundation TrustLondonUK
  6. 6.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
  7. 7.Department of Clinical Sciences, Malmö, Lund University Research Program in Medical InformaticsMalmö University HospitalMalmöSweden
  8. 8.Nuclear Medicine DepartmentAutonomous University of BarcelonaBarcelonaSpain
  9. 9.Artificial Intelligence Program at Cedars-Sinai Medical Center and Department of Medicine of the University of California at Los AngelesLos AngelesUSA
  10. 10.Department of Nuclear MedicineUniversity Medical Centre Ljubljana, Radiopharmacy and Clinical BiochemistryZaloska 7Slovenia
  11. 11.Nuclear MedicineAZ VUBBrusselsBelgium
  12. 12.Nuclear Medicine DepartmentHarefield HospitalHarefieldUK
  13. 13.Service de medecine nucleairehôpital Bichat, APHP, Université Denis-Diderot, UMR577B, and Inserm U773ParisFrance
  14. 14.Medical Radiation Physics, Clinical Sciences, LundLund UniversityLundSweden
  15. 15.Department of Cardiology, Fondazione MaugeriIRCCSVerunoItaly
  16. 16.Nuclear Medicine DepartmentAberdeen Royal InfirmaryScotlandUK
  17. 17.Nuclear Medicine DepartmentUniversity Hospital, Aachen University of TechnologyAachenGermany
  18. 18.Department of Nuclear MedicineUniversity Hospital MünsterMünsterGermany
  19. 19.Department of Nuclear MedicineRoyal Brompton HospitalLondonUK

Personalised recommendations