68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression

Original article



We and others have reported that 18F- and 64Cu-labeled arginine–glycine–aspartate (RGD) peptides allow positron emission tomography (PET) quantification of integrin αvβ3 expression in vivo. However, clinical translation of these radiotracers is partially hindered by the necessity of cyclotron facility to produce the PET isotopes. Generator-based PET isotope 68Ga, with a half-life of 68 min and 89% positron emission, deserves special attention because of its independence of an onsite cyclotron. The goal of this study was to investigate the feasibility of 68Ga-labeled RGD peptides for tumor imaging.


Three cyclic RGD peptides, c(RGDyK) (RGD1), E[c(RGDyK)]2 (RGD2), and E{E[c(RGDyK)]2}2 (RGD4), were conjugated with macrocyclic chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and labeled with 68Ga. Integrin affinity and specificity of the peptide conjugates were assessed by cell-based receptor binding assay, and the tumor targeting efficacy of 68Ga-labeled RGD peptides was evaluated in a subcutaneous U87MG glioblastoma xenograft model.


U87MG cell-based receptor binding assay using 125I-echistatin as radioligand showed that integrin affinity followed the order of NOTA–RGD4 > NOTA–RGD2 > NOTA–RGD1. All three NOTA conjugates allowed nearly quantitative 68Ga-labeling within 10 min (12–17 MBq/nmol). Quantitative microPET imaging studies showed that 68Ga-NOTA–RGD4 had the highest tumor uptake but also prominent activity accumulation in the kidneys. 68Ga-NOTA–RGD2 had higher tumor uptake (e.g., 2.8 ± 0.1%ID/g at 1 h postinjection) and similar pharmacokinetics (4.4 ± 0.4 tumor/muscle ratio, 2.0 ± 0.1 tumor/liver ratio, and 1.1 ± 0.1 tumor/kidney ratio) compared with 68Ga-NOTA–RGD1.


The dimeric RGD peptide tracer 68Ga-NOTA–RGD2 with good tumor uptake and favorable pharmacokinetics warrants further investigation for potential clinical translation to image integrin αvβ3.


Integrin αvβ3 Multimeric RGD peptides NOTA microPET Ga-68 


  1. 1.
    Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, et al. Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res. 1990;50:6757–64.PubMedGoogle Scholar
  2. 2.
    Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al. αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery. 2001;49:380–9. discussion 90.PubMedCrossRefGoogle Scholar
  3. 3.
    Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest. 1995;96:1815–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Puduvalli VK. Inhibition of angiogenesis as a therapeutic strategy against brain tumors. Cancer Treat Res. 2004;117:307–36.PubMedGoogle Scholar
  5. 5.
    Sengupta S, Chattopadhyay N, Mitra A, Ray S, Dasgupta S, Chatterjee A. Role of αvβ3 integrin receptors in breast tumor. J Exp Clin Cancer Res. 2001;20:585–90.PubMedGoogle Scholar
  6. 6.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science. 1994;264:569–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct αv integrins. Science. 1995;270:1500–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Horton MA. The αvβ3 integrin “vitronectin receptor”. Int J Biochem Cell Biol. 1997;29:721–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer. 2004;90:561–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar CC. Integrin αvβ3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets. 2003;4:123–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Jung KH, Lee KH, Paik JY, Ko BH, Bae JS, Lee BC, et al. Favorable biokinetic and tumor-targeting properties of 99mTc-labeled glucosamino RGD and effect of paclitaxel therapy. J Nucl Med. 2006;47:2000–7.PubMedGoogle Scholar
  13. 13.
    Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med. 2006;47:113–21.PubMedGoogle Scholar
  14. 14.
    Tucker GC. αv integrin inhibitors and cancer therapy. Curr Opin Investig Drugs. 2003;4:722–31.PubMedGoogle Scholar
  15. 15.
    Dijkgraaf I, Liu S, Kruijtzer JA, Soede AC, Oyen WJ, Liskamp RM, et al. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol. 2007;34:29–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, et al. Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging. 2007;34:267–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the. αvβ3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46:1333–41.PubMedGoogle Scholar
  18. 18.
    Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharm. 2006;3:472–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu S, Edwards DS, Ziegler MC, Harris AR, Hemingway SJ, Barrett JA. 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug Chem. 2001;12:624–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Sharma SD, Jiang J, Hadley ME, Bentley DL, Hruby VJ. Melanotropic peptide-conjugated beads for microscopic visualization and characterization of melanoma melanotropin receptors. Proc Natl Acad Sci USA. 1996;93:13715–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Mammen M, Chio S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl. 1998;37:2755–94.CrossRefGoogle Scholar
  22. 22.
    Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med. 2005;46:1707–18.PubMedGoogle Scholar
  23. 23.
    Ye Y, Bloch S, Xu B, Achilefu S. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem. 2006;49:2268–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu Z, Li Z, Cai W, He L, Chin F, Li F, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2007;34:1823–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al. microPET of Tumor Integrin αvβ3 Expression Using 18F-Labeled PEGylated Tetrameric RGD Peptide (18F-FPRGD4). J Nucl Med. 2007;48:1536–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med. 2007;48:1162–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med. 2005;46(Suppl 1):172S–8S.PubMedGoogle Scholar
  28. 28.
    Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001;42:326–36.PubMedGoogle Scholar
  30. 30.
    Benedetti E, Morelli G, Accardo A, Mansi R, Tesauro D, Aloj L. Criteria for the design and biological characterization of radiolabeled peptide-based pharmaceuticals. BioDrugs. 2004;18:279–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Clarke ET, Martell AE. Stabilities of trivalent metal ion complexes of tetraacetate derivatives of 12-, 13- and 14-membered tetraazamacrocycles. Inorganica Chim Acta. 1991;190:37–46.CrossRefGoogle Scholar
  32. 32.
    Clarke ET, Martell AE. Stabilities of the Fe(III), Ga(III), and In(III) chelates of N,N′,N′-triazacyclononanetriacetic acid. Inorganica Chim Acta. 1991;181:273–80.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X ProgramStanford University School of MedicineStanfordUSA

Personalised recommendations