Advertisement

Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence

  • Manuel Gómez-Río
  • Antonio Rodríguez-FernándezEmail author
  • Carlos Ramos-Font
  • Escarlata López-Ramírez
  • José Manuel Llamas-Elvira
Original article

Abstract

Purpose

Reliable differential diagnosis between tumour recurrence and treatment-induced lesions is required to take advantage of new therapeutic approaches to recurrent gliomas. Structural imaging methods offer a high sensitivity but a low specificity, which might be improved by neurofunctional imaging. This study aimed to test the hypothesis that incorporation of 18-fluoro-deoxy-glucose positron emission tomography (FDG-PET) increases the accuracy of this differential diagnosis obtained with 201Tl chloride-single-photon emission computed tomography (201Tl-SPECT).

Materials and methods

Seventy-six patients (mean age 47.72 ± 16.19 years) under suspicion of glioma recurrence, 42% with low-grade and 58% with high-grade lesions, were studied by 201Tl-SPECT and FDG-PET, reporting results under blinded conditions using visual analysis. Tumour was confirmed by histological confirmation (23 patients) or clinical and structural neuroimaging follow-up (mean of 2.6 years).

Results

This population had a high disease prevalence (72%). Globally, highest sensitivity was obtained using 201Tl-SPECT assessed with MRI (96%) and highest specificity using FDG-PET + MRI (95%). FDG-PET appeared slightly better for confirming tumour recurrence, whereas 201Tl-SPECT was superior for ruling out possible recurrence (disease present in 38% of FDG-PET negative explorations). In the high-grade subgroup, there were no false-positive examinations (specificity: 100%), but sensitivity differed among techniques (201Tl-SPECT: 94%; 201Tl-SPECT + MRI: 97%; FDG-PET + MRI: 83%). In the low-grade subgroup, 201Tl-SPECT+ MRI showed highest sensitivity (95%) and lowest posttest negative probability (9%); FDG-PET + MRI offered highest specificity (92%) with a posttest negative probability of 35%.

Conclusions

FDG-PET does not clearly improve the diagnostic accuracy of 201Tl-SPECT, which appears to be a more appropriate examination for the diagnosis of possible brain tumour recurrence, especially for ruling it out.

Keywords

Glioma recurrence Radionecrosis Tl-201•SPECT FDG-PET Diagnostic accuracy 

Notes

Acknowledgments

The authors are grateful to Richard Davies for assistance with the English version and to Pablo Lardelli-Claret for study design and data analysis supervision.

References

  1. 1.
    Hoffman JM. New advances in brain tumour imaging. Curr Opin Oncol. 2001;13:148-53.CrossRefPubMedGoogle Scholar
  2. 2.
    Cao Y, Sundgren PC, Tsien CI, Chenevert TT, Junck L. Physiologic and metabolic magnetic resonance imaging in gliomas. J Clin Oncol. 2006;24:1228-35.CrossRefPubMedGoogle Scholar
  3. 3.
    Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, et al. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumours. AJNR Am J Neuroradiol. 2006;27:1404-11.PubMedGoogle Scholar
  4. 4.
    Ricci PE, Dungan DH. Imaging of low- and intermediate-grade gliomas. Semin Radiat Oncol. 2001;11:103-12.CrossRefPubMedGoogle Scholar
  5. 5.
    Lang FF, Gilbert MR. Diffusely infiltrative low-grade gliomas in adults. J Clin Oncol. 2006;24:1236-45.CrossRefPubMedGoogle Scholar
  6. 6.
    Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33:148-62.CrossRefPubMedGoogle Scholar
  7. 7.
    Sehweil AM, McKillop JH, Milroy R, Wilson R, Abdel-Dayem HM, Omar YT. Mechanism of 201Tl uptake in tumours. Eur J Nucl Med Mol Imaging. 1989;15:376-9.CrossRefGoogle Scholar
  8. 8.
    Perry JR, Cairncross JG. Glioma therapies: how to tell which work? J Clin Oncol 2003;21:3547-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Minn H. PET and SPECT in low-grade glioma. Eur J Radiol. 2005;56:171-8.CrossRefPubMedGoogle Scholar
  10. 10.
    Spaeth N, Wyss MT, Pahnke J, Biollaz G, Lutz A, Goepfert K, et al. Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-l-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur J Nucl Med Mol Imaging. 2006;33:673-82.CrossRefPubMedGoogle Scholar
  11. 11.
    Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, et al. Diagnosis of recurrent brain tumour: value of 201Tl SPECT vs. 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol. 1994;163:1459-65.CrossRefPubMedGoogle Scholar
  12. 12.
    Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumour from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol. 1998;19:407-13.PubMedGoogle Scholar
  13. 13.
    Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96:191-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Jacobs AH, Li H, Winkeler A, Hilker R, Knoess C, Rüger A, et al. PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging. 2003;30:1051-65.CrossRefPubMedGoogle Scholar
  15. 15.
    Vos MJ, Berkhof J, Postma TJ, Hoekstra OS, Barkhof F, Heimans JJ. Thallium-201 SPECT: the optimal prediction of response in glioma therapy. Eur J Nucl Med Mol Imaging. 2006;33:222-7.CrossRefPubMedGoogle Scholar
  16. 16.
    Oriuchi N, Tomiyoshi K, Inoue T, Ahmad K, Sarwar M, Tokunaga M, et al. Independent thallium-201 accumulation and fluorine-18-fluorodeoxyglucose metabolism in glioma. J Nucl Med. 1996;37:457-62.PubMedGoogle Scholar
  17. 17.
    Sasaki M, Kuwabara Y, Yoshida T, Nakagawa M, Fukumura T, Mihara F, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med Mol Imaging. 1998;25:1261-9.CrossRefGoogle Scholar
  18. 18.
    Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neruol. 2002;61:215-25.CrossRefGoogle Scholar
  19. 19.
    Mc Donald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for Phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277-80.CrossRefGoogle Scholar
  20. 20.
    Ortega S, Rodríguez-Fernández A, Martínez del Valle MD, Gómez R-M, Ramos-Font C, Sabatel G, et al. 201Tl-SPECT, FDG-PET and neurostructural imaging in the follow-up of glial brain tumours (Abstract). Eur J Nucl Med Mol Imaging. 2004;31:293-4.CrossRefGoogle Scholar
  21. 21.
    Gomez-Río M, Martinez Del Valle Torres D, Rodriguez-Fernandez A, Llamas-Elvira JM, Lozano SO, Font CR, et al. 201Tl-SPECT in low-grade gliomas: diagnostic accuracy in differential diagnosis between tumour recurrence and radionecrosis. Eur J Nucl Med Mol Imaging. 2004;31:1237-43.CrossRefPubMedGoogle Scholar
  22. 22.
    Mettler FA Jr, Guiberteau MJ. Essentials of nuclear medicine imaging. Chapter 4: cerebrovascular system. 5th ed. Philadelphia: Saunders-Elsevier; 2006. p. 53-74.Google Scholar
  23. 23.
    Kim CK, Alavi JB, Alavi A, Reivich M. New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose. J Neurooncol. 1991;10:85-91.CrossRefPubMedGoogle Scholar
  24. 24.
    Meyer PT, Schreckenberger M, Spetzger U, Meyer GF, Sabri O, Setani KS, et al. Comparison of visual and ROI-based brain tumor grading using 18F-FDG PET: ROC analyses. Eur J Nucl Med Mol Imaging. 2001;28:165-74.CrossRefGoogle Scholar
  25. 25.
    Vos MJ, Tony BN, Hoekstra OS, Postma TJ, Heimans JJ, Hooft L. Systematic review of the diagnostic accuracy of 201Tl single photon emission computed tomography in the detection of recurrent glioma. Nucl Med Commun. 2007;28:431-9.CrossRefPubMedGoogle Scholar
  26. 26.
    Bryan RN. What’s your favourite PET story? Am J Neuroradiol. 1998;19:590.PubMedGoogle Scholar
  27. 27.
    Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Shishido F, et al. Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer. 1994;73:2386-94.CrossRefPubMedGoogle Scholar
  28. 28.
    Lammertsma AA, Wise RJ, Cox TC, Thomas DG, Jones T. Measurement of blood flow, oxygen utilisation, oxygen extraction ratio, and fractional blood volume in human brain tumours and surrounding oedematous tissue. Br J Radiol. 1985;58:725-34.CrossRefPubMedGoogle Scholar
  29. 29.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumours with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945-52.PubMedGoogle Scholar
  30. 30.
    Vos MJ, Uitdehaag BM, Barkhof F, Heimans JJ, Baayen HC, Boogerd W, et al. Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology. 2003;60:826-30.CrossRefPubMedGoogle Scholar
  31. 31.
    Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumour from radiation necrosis. Radiol Clin N Am. 2005;43:35-47.CrossRefPubMedGoogle Scholar
  32. 32.
    Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, et al. Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 1996;78:1098-106.CrossRefPubMedGoogle Scholar
  33. 33.
    Henze M, Mohammed A, Schlemmer HP, Herfarth KK, Hoffner S, Haufe S, et al. PET and SPECT for detection of tumour progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J Nucl Med. 2004;45:579-86.PubMedGoogle Scholar
  34. 34.
    Galanis E, Buckner JC. Chemotherapy of brain tumours. Curr Opin Neurol 2000;13:619-25.CrossRefPubMedGoogle Scholar
  35. 35.
    Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-Oncol. 2001;3:193-200.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Siepmann DB, Siegel A, Lewis PJ. Tl-201 SPECT and F-18 FDG PET for assessment of glioma recurrence versus radiation necrosis. Clin Nucl Med. 2005;30:199-200.CrossRefPubMedGoogle Scholar
  37. 37.
    Belohlávek O, Simonová G, Kantorová I, Novotný J Jr, Liscák R. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging. 2003;30:96-100.CrossRefPubMedGoogle Scholar
  38. 38.
    Matheja P, Rickert C, Weckesser M, Palkovic S, Lottgen J, Riemann B, et al. Sequential scintigraphic strategy for the differentiation of brain tumours. Eur J Nucl Med Mol Imaging. 2000;27:550-8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Manuel Gómez-Río
    • 1
  • Antonio Rodríguez-Fernández
    • 1
    Email author
  • Carlos Ramos-Font
    • 1
  • Escarlata López-Ramírez
    • 1
  • José Manuel Llamas-Elvira
    • 1
  1. 1.Nuclear Medicine Department, “Virgen de las Nieves”University HospitalGranadaSpain

Personalised recommendations