Advertisement

Initial evaluation of 18F-fluorothymidine (FLT) PET/CT scanning for primary pancreatic cancer

  • A. QuonEmail author
  • S. T. Chang
  • F. Chin
  • A. Kamaya
  • D. W. Dick
  • B. W. LooJr.
  • S. S. Gambhir
  • A. C. Koong
Short Communication

Abstract

Purpose

The aim of this study was to evaluate the potential of 18F-fluorothymidine (FLT) PET/CT for imaging pancreatic adenocarcinoma.

Methods

This was a pilot study of five patients (four males, one female) with newly diagnosed and previously untreated pancreatic adenocarcinoma. Patients underwent FLT PET/CT, 18F-fluorodeoxyglucose (FDG) PET/CT, and contrast-enhanced CT scanning before treatment. The presence of cancer was confirmed by histopathological analysis at the time of scanning in all five patients. The degree of FLT and FDG uptake at the primary tumor site was assessed using visual interpretation and semi-quantitative SUV analyses.

Results

The primary tumor size ranged from 2.5×2.8 cm to 3.5 × 7.0 cm. The SUV of FLT uptake within the primary tumor ranged from 2.1 to 3.1. Using visual interpretation, the primary cancer could be detected from background activity in two of five patients (40%) on FLT PET/CT. By comparison, FDG uptake was higher in each patient with a SUV range of 3.4 to 10.8, and the primary cancer could be detected from background in all five patients (100%).

Conclusions

In this pilot study of five patients with primary pancreatic adenocarcinoma, FLT PET/CT scanning showed poor lesion detectability and relatively low levels of radiotracer uptake in the primary tumor.

Keywords

FLT PET FDG PET PET/CT Pancreatic cancer Oncology 

Notes

Acknowledgements

Manuscript editor: I. Ross McDougall, Andrei H. Iagaru; radiotracer synthesis: Murugesan Subbarayan.

The study was funded in part by The Stanford University Office of Technology Licensing.

Conflict of interest statement

The authors have no conflicts of interest to report.

References

  1. 1.
    Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med Sep. 2003;44(9):1432–4.PubMedGoogle Scholar
  2. 2.
    Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med Sep. 2003;44(9):1426–31.Google Scholar
  3. 3.
    Herrmann K, Wieder HA, Buck AK, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 2007;13(12):3552–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Pio BS, Park CK, Pietras R, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 2006;8(1):36–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Wieder HA, Geinitz H, Rosenberg R, et al. PET imaging with [(18)F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 2007;34(6):878–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Seitz U, Wagner M, Neumaier B, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002;29(9):1174–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;243(3):843–6.CrossRefGoogle Scholar
  8. 8.
    Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32(4):623–48; discussion 649–650.PubMedGoogle Scholar
  9. 9.
    Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in “clinical reality”. Ann Nucl Med 2003;17(4):261–79.PubMedCrossRefGoogle Scholar
  10. 10.
    van Kouwen MC, Jansen JB, van Goor H, de Castro S, Oyen WJ, Drenth JP. FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Ann Nucl Med 2005;32(4):399–404.Google Scholar
  11. 11.
    Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1 regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 2005;32(3):257–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biology 2004;31(7):829–37.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Quon
    • 1
    Email author
  • S. T. Chang
    • 2
  • F. Chin
    • 1
  • A. Kamaya
    • 1
  • D. W. Dick
    • 1
  • B. W. LooJr.
    • 2
  • S. S. Gambhir
    • 1
  • A. C. Koong
    • 2
  1. 1.Department of Radiology and Molecular Imaging Program at Stanford (MIPS)Stanford University Medical CenterStanfordUSA
  2. 2.Department of Radiation OncologyStanford University Medical CenterStanfordUSA

Personalised recommendations