Multimodality imaging of the HER-kinase axis in cancer

  • Weibo Cai
  • Gang Niu
  • Xiaoyuan Chen
Review Article


The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in epithelial cell differentiation, growth, division, and motility. Alterations and disruptions in the function of the HER-kinase axis can lead to malignancy. Many therapeutic agents targeting the HER-kinase axis are approved for clinical use or are in preclinical/clinical development. The ability to quantitatively image the HER-kinase axis in a noninvasive manner can aid in lesion detection, patient stratification, new drug development/validation, dose optimization, and treatment monitoring. This review summarizes the current status in multimodality imaging of the HER-kinase axis using PET, SPECT, optical, and MR imaging. The targeting ligands used include small-molecule tyrosine kinase inhibitors, peptides, proteins, antibodies, and engineered antibody fragments. EGFR and HER2 imaging have been well documented in the past, and imaging of HER3, HER4, HER heterodimers, and HER-kinase mutants deserves significant research effort in the future. Successful development of new HER-kinase-targeted imaging agents with optimal in vivo stability, targeting efficacy, and desirable pharmacokinetics for clinical translation will enable maximum benefit in cancer patient management.


Human epidermal growth factor receptor (HER) tyrosine kinase family Epidermal growth factor receptor (EGFR) HER2 Molecular imaging Cancer 



Research at the authors’ laboratory was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (R21 EB001785), National Cancer Institute (NCI) (R21 CA102123, P50 CA114747, CCNE U54 CA119367, and R24 CA93862), Department of Defense (DOD) (W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042, W81XWH-07-1-0374, and DAMD17-03-1-0143), and a Benedict Cassen Postdoctoral Fellowship from the Education and Research Foundation of the Society of Nuclear Medicine (to W. Cai).


  1. 1.
    Lin CR, Chen WS, Kruiger W, Stolarsky LS, Weber W, Evans RM, et al. Expression cloning of human EGF receptor complementary DNA: gene amplification and three related messenger RNA products in A431 cells. Science 1984;224:843–8.PubMedGoogle Scholar
  2. 2.
    Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984;307:521–7.PubMedGoogle Scholar
  3. 3.
    Casalini P, Iorio MV, Galmozzi E, Menard S. Role of HER receptors family in development and differentiation. J Cell Physiol 2004;200:343–50.PubMedGoogle Scholar
  4. 4.
    Mass RD. The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 2004;58:932–40.PubMedGoogle Scholar
  5. 5.
    Gross ME, Shazer RL, Agus DB. Targeting the HER-kinase axis in cancer. Semin Oncol 2004;31:9–20.PubMedGoogle Scholar
  6. 6.
    Prichard JW, Brass LM. New anatomical and functional imaging methods. Ann Neurol 1992;32:395–400.PubMedGoogle Scholar
  7. 7.
    Dawson P. Functional imaging in CT. Eur J Radiol 2006;60:331–40.PubMedGoogle Scholar
  8. 8.
    Detre JA. Clinical applicability of functional MRI. J Magn Reson Imaging 2006;23:808–15.PubMedGoogle Scholar
  9. 9.
    Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316–33.PubMedGoogle Scholar
  10. 10.
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.PubMedGoogle Scholar
  11. 11.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMedGoogle Scholar
  12. 12.
    Even-Sapir E, Lerman H, Lievshitz G, Khafif A, Fliss DM, Schwartz A, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med 2003;44:1413–20.PubMedGoogle Scholar
  13. 13.
    Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47:1968–76.PubMedGoogle Scholar
  14. 14.
    Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 2006;5:2624–33.PubMedGoogle Scholar
  15. 15.
    Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin Oncol 2003;30:3–14.Google Scholar
  16. 16.
    Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 2006;1766:120–39.PubMedGoogle Scholar
  17. 17.
    Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211–25.PubMedGoogle Scholar
  18. 18.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366:2–16.PubMedGoogle Scholar
  19. 19.
    Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res 1995;55:5536–9.PubMedGoogle Scholar
  20. 20.
    Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996;13:85–96.PubMedGoogle Scholar
  21. 21.
    Pedersen MW, Meltorn M, Damstrup L, Poulsen HS. The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 2001;12:745–60.PubMedGoogle Scholar
  22. 22.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–39.PubMedGoogle Scholar
  23. 23.
    Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305:1163–7.PubMedGoogle Scholar
  24. 24.
    Lohrisch C, Piccart M. An overview of HER2. Semin Oncol 2001;28:3–11.PubMedGoogle Scholar
  25. 25.
    Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumour progression and therapy. Cell Mol Life Sci 2004;61:2965–78.PubMedGoogle Scholar
  26. 26.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37.PubMedGoogle Scholar
  27. 27.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.PubMedGoogle Scholar
  28. 28.
    Koeppen HK, Wright BD, Burt AD, Quirke P, McNicol AM, Dybdal NO, et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology 2001;38:96–104.PubMedGoogle Scholar
  29. 29.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988;54:105–15.PubMedGoogle Scholar
  30. 30.
    Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumour progression. J Biol Chem 1996;271:7673–8.PubMedGoogle Scholar
  31. 31.
    Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1990;5:237–9.PubMedGoogle Scholar
  32. 32.
    Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 2007;7:389–97.PubMedGoogle Scholar
  33. 33.
    Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv 1996;27:339–49.PubMedGoogle Scholar
  34. 34.
    Carpenter G. ErbB-4: mechanism of action and biology. Exp Cell Res 2003;284:66–77.PubMedGoogle Scholar
  35. 35.
    Ranson M, Sliwkowski MX. Perspectives on anti-HER monoclonal antibodies. Oncology 2002;63 Suppl 1:17–24.PubMedGoogle Scholar
  36. 36.
    Albanell J, Codony J, Rovira A, Mellado B, Gascon P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 2003;532:253–68.PubMedGoogle Scholar
  37. 37.
    Ciardiello F, Damiano V, Bianco R, Bianco C, Fontanini G, De Laurentiis M, et al. Antitumour activity of combined blockade of epidermal growth factor receptor and protein kinase A. J Natl Cancer Inst 1996;88:1770–6.PubMedGoogle Scholar
  38. 38.
    Goldberg RM. Cetuximab. Nat Rev Drug Discov 2005;Suppl:S10–1.PubMedGoogle Scholar
  39. 39.
    Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–78.PubMedGoogle Scholar
  40. 40.
    Thienelt CD, Bunn PA Jr, Hanna N, Rosenberg A, Needle MN, Long ME, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol 2005;23:8786–93.PubMedGoogle Scholar
  41. 41.
    Xiong HQ, Rosenberg A, LoBuglio A, Schmidt W, Wolff RA, Deutsch J, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol 2004;22:2610–6.PubMedGoogle Scholar
  42. 42.
    Frieze DA, McCune JS. Current status of cetuximab for the treatment of patients with solid tumours. Ann Pharmacother 2006;40:241–50.PubMedGoogle Scholar
  43. 43.
    Cohenuram M, Saif MW. Panitumumab, the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 2007;18:7–15.PubMedGoogle Scholar
  44. 44.
    Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 2002;9:75–85.PubMedGoogle Scholar
  45. 45.
    Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 2005;23:2534–43.PubMedGoogle Scholar
  46. 46.
    Rowinsky EK, Schwartz GH, Gollob JA, Thompson JA, Vogelzang NJ, Figlin R, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004;22:3003–15.PubMedGoogle Scholar
  47. 47.
    Crombet T, Osorio M, Cruz T, Roca C, del Castillo R, Mon R, et al. Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J Clin Oncol 2004;22:1646–54.PubMedGoogle Scholar
  48. 48.
    Vanhoefer U, Tewes M, Rojo F, Dirsch O, Schleucher N, Rosen O, et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumours that express the epidermal growth factor receptor. J Clin Oncol 2004;22:175–84.PubMedGoogle Scholar
  49. 49.
    Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci USA 2007;104:4071–6.PubMedGoogle Scholar
  50. 50.
    Seiden MV, Burris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J, et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 2007;104:727–31.PubMedGoogle Scholar
  51. 51.
    Modjtahedi H, Hickish T, Nicolson M, Moore J, Styles J, Eccles S, et al. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br J Cancer 1996;73:228–35.PubMedGoogle Scholar
  52. 52.
    Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C, et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 2003;89:2234–43.PubMedGoogle Scholar
  53. 53.
    Arteaga CL, Moulder SL, Yakes FM. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin Oncol 2002;29:4–10.PubMedGoogle Scholar
  54. 54.
    Herbst RS, Fukuoka M, Baselga J. Gefitinib-a novel targeted approach to treating cancer. Nat Rev Cancer 2004;4:956–65.PubMedGoogle Scholar
  55. 55.
    Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22:77–85.PubMedGoogle Scholar
  56. 56.
    Spivak-Kroizman T, Rotin D, Pinchasi D, Ullrich A, Schlessinger J, Lax I. Heterodimerization of c-erbB2 with different epidermal growth factor receptor mutants elicits stimulatory or inhibitory responses. J Biol Chem 1992;267:8056–63.PubMedGoogle Scholar
  57. 57.
    Krahn G, Leiter U, Kaskel P, Udart M, Utikal J, Bezold G, et al. Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-melanoma skin cancer. Eur J Cancer 2001;37:251–9.PubMedGoogle Scholar
  58. 58.
    Lackey KE. Lessons from the drug discovery of lapatinib, a dual ErbB1/2 tyrosine kinase inhibitor. Curr Top Med Chem 2006;6:435–60.PubMedGoogle Scholar
  59. 59.
    Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol 2001;28:80–5.PubMedGoogle Scholar
  60. 60.
    Campos S, Hamid O, Seiden MV, Oza A, Plante M, Potkul RK, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol 2005;23:5597–604.PubMedGoogle Scholar
  61. 61.
    Garland LL, Hidalgo M, Mendelson DS, Ryan DP, Arun BK, Lovalvo JL, et al. A phase I clinical and pharmacokinetic study of oral CI-1033 in combination with docetaxel in patients with advanced solid tumours. Clin Cancer Res 2006;12:4274–82.PubMedGoogle Scholar
  62. 62.
    Simon GR, Garrett CR, Olson SC, Langevin M, Eiseman IA, Mahany JJ, et al. Increased bioavailability of intravenous versus oral CI-1033, a pan erbB tyrosine kinase inhibitor: results of a phase I pharmacokinetic study. Clin Cancer Res 2006;12:4645–51.PubMedGoogle Scholar
  63. 63.
    Erlichman C, Hidalgo M, Boni JP, Martins P, Quinn SE, Zacharchuk C, et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumours. J Clin Oncol 2006;24:2252–60.PubMedGoogle Scholar
  64. 64.
    Yoshimura N, Kudoh S, Kimura T, Mitsuoka S, Matsuura K, Hirata K, et al. EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer 2006;51:363–8.PubMedGoogle Scholar
  65. 65.
    Nowakowski GS, McCollum AK, Ames MM, Mandrekar SJ, Reid JM, Adjei AA, et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 2006;12:6087–93.PubMedGoogle Scholar
  66. 66.
    Hoekstra R, Dumez H, Eskens FA, van der Gaast A, Planting AS, de Heus G, et al. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 2005;11:6908–15.PubMedGoogle Scholar
  67. 67.
    Burris HA 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O’Neil B, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005;23:5305–13.PubMedGoogle Scholar
  68. 68.
    Johnston SR, Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc) 2006;42:441–53.Google Scholar
  69. 69.
    Montemurro F, Valabrega G, Aglietta M. Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin Biol Ther 2007;7:257–68.PubMedGoogle Scholar
  70. 70.
    Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 2006;47:492–501.PubMedGoogle Scholar
  71. 71.
    Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 2006;47:1172–80.PubMedGoogle Scholar
  72. 72.
    Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 2007;48:445–54.PubMedGoogle Scholar
  73. 73.
    Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.PubMedGoogle Scholar
  74. 74.
    Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin™, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81.PubMedGoogle Scholar
  75. 75.
    Fredriksson A, Johnstrom P, Thorell JO, von Heijne G, Hassan M, Eksborg S, et al. In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants. Life Sci 1999;65:165–74.PubMedGoogle Scholar
  76. 76.
    Samen E, Thorell JO, Fredriksson A, Stone-Elander S. The tyrosine kinase inhibitor PD153035: implication of labeling position on radiometabolites formed in vitro. Nucl Med Biol 2006;33:1005–11.PubMedGoogle Scholar
  77. 77.
    Seimbille Y, Phelps ME, Czernin J, Silverman DHS. Fluorine-18 labeling of 6,7-disubstituted anilinoquinazoline derivatives for positron emission tomography (PET) imaging of tyrosine kinase receptors: synthesis of 18F-Iressa and related molecular probes. J Labelled Compd Radiopharm 2005;48:829–43.Google Scholar
  78. 78.
    Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 2006;16:4102–6.PubMedGoogle Scholar
  79. 79.
    Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, et al. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol 2001;28:359–74.PubMedGoogle Scholar
  80. 80.
    Ortu G, Ben-David I, Rozen Y, Freedman NM, Chisin R, Levitzki A, et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int J Cancer 2002;101:360–70.PubMedGoogle Scholar
  81. 81.
    Ben-David I, Rozen Y, Ortu G, Mishani E. Radiosynthesis of ML03, a novel positron emission tomography biomarker for targeting epidermal growth factor receptor via the labeling synthon: [11C]acryloyl chloride. Appl Radiat Isot 2003;58:209–17.PubMedGoogle Scholar
  82. 82.
    Mishani E, Abourbeh G, Jacobson O, Dissoki S, Ben Daniel R, Rozen Y, et al. High-affinity epidermal growth factor receptor (EGFR) irreversible inhibitors with diminished chemical reactivities as positron emission tomography (PET)-imaging agent candidates of EGFR overexpressing tumours. J Med Chem 2005;48:5337–48.PubMedGoogle Scholar
  83. 83.
    Mishani E, Abourbeh G, Rozen Y, Jacobson O, Laky D, Ben David I, et al. Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: potential PET bioprobes for molecular imaging of EGFR-positive tumours. Nucl Med Biol 2004;31:469–76.PubMedGoogle Scholar
  84. 84.
    Abourbeh G, Dissoki S, Jacobson O, Litchi A, Ben Daniel R, Laki D, et al. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumours. Nucl Med Biol 2007;34:55–70.PubMedGoogle Scholar
  85. 85.
    Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421–9.PubMedGoogle Scholar
  86. 86.
    Pal A, Glekas A, Doubrovin M, Balatoni J, Namavari M, Beresten T, et al. Molecular imaging of EGFR kinase activity in tumours with 124I-labeled small molecular tracer and positron emission tomography. Mol Imaging Biol 2006;8:262–77.PubMedGoogle Scholar
  87. 87.
    Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 2000;60 Suppl 1:25–32.PubMedGoogle Scholar
  88. 88.
    Cohen S. The epidermal growth factor (EGF). Cancer 1983;51:1787–91.PubMedGoogle Scholar
  89. 89.
    Carlsson J, Gedda L, Gronvik C, Hartman T, Lindstrom A, Lindstrom P, et al. Strategy for boron neutron capture therapy against tumour cells with over-expression of the epidermal growth factor-receptor. Int J Radiat Oncol Biol Phys 1994;30:105–15.PubMedGoogle Scholar
  90. 90.
    Zhao Q, Tolmachev V, Carlsson J, Lundqvist H, Sundin J, Janson JC, et al. Effects of dextranation on the pharmacokinetics of short peptides. A PET study on mEGF. Bioconjug Chem 1999;10:938–46.PubMedGoogle Scholar
  91. 91.
    Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, et al. Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumours. J Nucl Med 2005;46:1881–8.PubMedGoogle Scholar
  92. 92.
    Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46 Suppl 1:164S–71S.PubMedGoogle Scholar
  93. 93.
    Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumour-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46:1898–906.PubMedGoogle Scholar
  94. 94.
    Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34:850–8.PubMedGoogle Scholar
  95. 95.
    Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126–36.PubMedGoogle Scholar
  96. 96.
    Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23:1137–46.PubMedGoogle Scholar
  97. 97.
    Gansow OA. Newer approaches to the radiolabeling of monoclonal antibodies by use of metal chelates. Int J Rad Appl Instrum B 1991;18:369–81.PubMedGoogle Scholar
  98. 98.
    Peremans K, Cornelissen B, Van Den Bossche B, Audenaert K, Van de Wiele C. A review of small animal imaging planar and pinhole spect gamma camera imaging. Vet Radiol Ultrasound 2005;46:162–70.PubMedGoogle Scholar
  99. 99.
    Mease RC, Lambert C. Newer methods of labeling diagnostic agents with Tc-99m. Semin Nucl Med 2001;31:278–85.PubMedGoogle Scholar
  100. 100.
    Banerjee S, Pillai MR, Ramamoorthy N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 2001;31:260–77.PubMedGoogle Scholar
  101. 101.
    Subramanian R, Meares CF. Bifunctional chelating agents for radiometal-labeled monoclonal antibodies. Cancer Treat Res 1990;51:183–99.PubMedGoogle Scholar
  102. 102.
    Schatten C, Pateisky N, Vavra N, Ehrenbock P, Angelberger P, Sivolapenko G, et al. Lymphoscintigraphy with 123I-labelled epidermal growth factor. Lancet 1991;337:395–6.PubMedGoogle Scholar
  103. 103.
    Pateisky N, Schatten C, Vavra N, Ehrebock P, Angelberger P, Barrada M, et al. Lymphoscintigraphy using epidermal growth factor as tumour-seeking agent in uterine cervical cancer. Wien Klin Wochenschr 1991;103:654–6.PubMedGoogle Scholar
  104. 104.
    Holmberg A, Marquez M, Westlin JE, Nilsson S. Labeling of polypeptides with technetium-99m using a dextran spacer. Cancer Res 1995;55:5710s–3s.PubMedGoogle Scholar
  105. 105.
    Yang W, Barth RF, Leveille R, Adams DM, Ciesielski M, Fenstermaker RA, et al. Evaluation of systemically administered radiolabeled epidermal growth factor as a brain tumour targeting agent. J Neurooncol 2001;55:19–28.PubMedGoogle Scholar
  106. 106.
    Cornelissen B, Kersemans V, Burvenich I, Oltenfreiter R, Vanderheyden JL, Boerman O, et al. Synthesis, biodistribution and effects of farnesyltransferase inhibitor therapy on tumour uptake in mice of 99mTc labelled epidermal growth factor. Nucl Med Commun 2005;26:147–53.PubMedGoogle Scholar
  107. 107.
    Babaei MH, Almqvist Y, Orlova A, Shafii M, Kairemo K, Tolmachev V. [99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation. Oncol Rep 2005;13:1169–75.PubMedGoogle Scholar
  108. 108.
    Capala J, Barth RF, Bailey MQ, Fenstermaker RA, Marek MJ, Rhodes BA. Radiolabeling of epidermal growth factor with 99mTc and in vivo localization following intracerebral injection into normal and glioma-bearing rats. Bioconjug Chem 1997;8:289–95.PubMedGoogle Scholar
  109. 109.
    Vinter-Jensen L, Frokiaer J, Jorgensen PE, Marqversen J, Rehling M, Dajani EZ, et al. Tissue distribution of 131I-labelled epidermal growth factor in the pig visualized by dynamic scintigraphy. J Endocrinol 1995;144:5–12.PubMedGoogle Scholar
  110. 110.
    Cuartero-Plaza A, Martinez-Miralles E, Rosell R, Vadell-Nadal C, Farre M, Real FX. Radiolocalization of squamous lung carcinoma with 131I-labeled epidermal growth factor. Clin Cancer Res 1996;2:13–20.PubMedGoogle Scholar
  111. 111.
    Yang W, Barth RF, Adams DM, Soloway AH. Intratumoural delivery of boronated epidermal growth factor for neutron capture therapy of brain tumours. Cancer Res 1997;57:4333–9.PubMedGoogle Scholar
  112. 112.
    Kurihara A, Deguchi Y, Pardridge WM. Epidermal growth factor radiopharmaceuticals: 111In chelation, conjugation to a blood-brain barrier delivery vector via a biotin-polyethylene linker, pharmacokinetics, and in vivo imaging of experimental brain tumours. Bioconjug Chem 1999;10:502–11.PubMedGoogle Scholar
  113. 113.
    Wang J, Chen P, Su ZF, Vallis K, Sandhu J, Cameron R, et al. Amplified delivery of indium-111 to EGFR-positive human breast cancer cells. Nucl Med Biol 2001;28:895–902.PubMedGoogle Scholar
  114. 114.
    Tolmachev V, Orlova A, Wei Q, Bruskin A, Carlsson J, Gedda L. Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice. Cancer Biother Radiopharm 2004;19:491–501.PubMedGoogle Scholar
  115. 115.
    Reilly RM, Kiarash R, Cameron RG, Porlier N, Sandhu J, Hill RP, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 2000;41:429–38.PubMedGoogle Scholar
  116. 116.
    Reilly RM, Gariepy J. Factors influencing the sensitivity of tumour imaging with a receptor-binding radiopharmaceutical. J Nucl Med 1998;39:1036–43.PubMedGoogle Scholar
  117. 117.
    Chen P, Mrkobrada M, Vallis KA, Cameron R, Sandhu J, Hendler A, et al. Comparative antiproliferative effects of 111In-DTPA-hEGF, chemotherapeutic agents and gamma-radiation on EGFR-positive breast cancer cells. Nucl Med Biol 2002;29:693–9.PubMedGoogle Scholar
  118. 118.
    Chen P, Cameron R, Wang J, Vallis KA, Reilly RM. Antitumour effects and normal tissue toxicity of 111In-labeled epidermal growth factor administered to athymic mice bearing epidermal growth factor receptor-positive human breast cancer xenografts. J Nucl Med 2003;44:1469–78.PubMedGoogle Scholar
  119. 119.
    Reilly RM, Scollard DA, Wang J, Mondal H, Chen P, Henderson LA, et al. A kit formulated under good manufacturing practices for labeling human epidermal growth factor with 111In for radiotherapeutic applications. J Nucl Med 2004;45:701–8.PubMedGoogle Scholar
  120. 120.
    Reilly RM, Chen P, Wang J, Scollard D, Cameron R, Vallis KA. Preclinical pharmacokinetic, biodistribution, toxicology, and dosimetry studies of 111In-DTPA-human epidermal growth factor: an Auger electron-emitting radiotherapeutic agent for epidermal growth factor receptor-positive breast cancer. J Nucl Med 2006;47:1023–31.PubMedGoogle Scholar
  121. 121.
    Fernandez A, Spitzer E, Perez R, Boehmer FD, Eckert K, Zschiesche W, et al. A new monoclonal antibody for detection of EGF-receptors in Western blots and paraffin-embedded tissue sections. J Cell Biochem 1992;49:157–65.PubMedGoogle Scholar
  122. 122.
    Ramos-Suzarte M, Rodriguez N, Oliva JP, Iznaga-Escobar N, Perera A, Morales A, et al. 99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumours of epithelial origin: part III. Clinical trials safety and diagnostic efficacy. J Nucl Med 1999;40:768–75.PubMedGoogle Scholar
  123. 123.
    Mishra AK, Panwar P, Hosono M, Chuttani K, Mishra P, Sharma RK, et al. A new bifunctional chelating agent conjugated with monoclonal antibody and labelled with technetium-99m for targeted scintigraphy: 6-(4-isothiocyanatobenzyl)-5,7-dioxo-1,11-(carboxymethyl)-1,4,8,11-tetraaz acyclotridecane. J Drug Target 2004;12:559–67.PubMedGoogle Scholar
  124. 124.
    Pnwar P, Iznaga-Escobar N, Mishra P, Srivastava V, Sharma RK, Chandra R, et al. Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-EGFR antibody ior egf/r3 for targeted tumour imaging and therapy. Cancer Biol Ther 2005;4:854–60.PubMedCrossRefGoogle Scholar
  125. 125.
    Takasu S, Takahashi T, Okamoto S, Oriuchi N, Nakayashiki N, Okamoto K, et al. Radioimmunoscintigraphy of intracranial glioma xenograft with a technetium-99m-labeled mouse monoclonal antibody specifically recognizing type III mutant epidermal growth factor receptor. J Neurooncol 2003;63:247–56.PubMedGoogle Scholar
  126. 126.
    Scopinaro F, De Vincentis G, Banci M, Schillaci O, Di Loreto M, Danieli R, et al. In vivo study of a technetium labelled anti-EGFr MoAB. Anticancer Res 1997;17:1761–5.PubMedGoogle Scholar
  127. 127.
    Schechter NR, Yang DJ, Azhdarinia A, Kohanim S, Wendt R 3rd, Oh CS, et al. Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 2003;14:49–56.PubMedGoogle Scholar
  128. 128.
    Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J. Imaging of human tumour xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 1989;81:1616–25.PubMedGoogle Scholar
  129. 129.
    Vokes EE, Chu E. Anti-EGFR therapies: clinical experience in colorectal, lung, and head and neck cancers. Oncology (Williston Park) 2006;20:15–25.Google Scholar
  130. 130.
    Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991;83:97–104.PubMedGoogle Scholar
  131. 131.
    Dadparvar S, Krishna L, Miyamoto C, Brady LW, Brown SJ, Bender H, et al. Indium-111-labeled anti-EGFr-425 scintigraphy in the detection of malignant gliomas. Cancer 1994;73:884–9.PubMedGoogle Scholar
  132. 132.
    Takahashi H, Herlyn D, Atkinson B, Powe J, Rodeck U, Alavi A, et al. Radioimmunodetection of human glioma xenografts by monoclonal antibody to epidermal growth factor receptor. Cancer Res 1987;47:3847–50.PubMedGoogle Scholar
  133. 133.
    Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, et al. A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 2000;41:903–11.PubMedGoogle Scholar
  134. 134.
    Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc 2005;2:533–6, 510–11.PubMedGoogle Scholar
  135. 135.
    Berman DS, Kiat H, Van Train K, Friedman JD, Wang FP, Germano G. Dual-isotope myocardial perfusion SPECT with rest thallium-201 and stress Tc-99m sestamibi. Cardiol Clin 1994;12:261–70.PubMedGoogle Scholar
  136. 136.
    Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 2003;63:7870–5.PubMedGoogle Scholar
  137. 137.
    Sako Y, Ichinose J, Morimatsu M, Ohta K, Uyemura T. Optical bioimaging: from living tissue to a single molecule: single-molecule visualization of cell signaling processes of epidermal growth factor receptor. J Pharmacol Sci 2003;93:253–8.PubMedGoogle Scholar
  138. 138.
    Thorne RG, Hrabetova S, Nicholson C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 2004;92:3471–81.PubMedGoogle Scholar
  139. 139.
    Kovar JL, Volcheck WM, Chen J, Simpson MA. Purification method directly influences effectiveness of an epidermal growth factor-coupled targeting agent for noninvasive tumour detection in mice. Anal Biochem 2007;361:47–54.PubMedGoogle Scholar
  140. 140.
    Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumour imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 2000;72:392–8.PubMedGoogle Scholar
  141. 141.
    Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumour integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8:226–36.PubMedGoogle Scholar
  142. 142.
    Hsu ER, Anslyn EV, Dharmawardhane S, Alizadeh-Naderi R, Aaron JS, Sokolov KV, et al. A far-red fluorescent contrast agent to image epidermal growth factor receptor expression. Photochem Photobiol 2004;79:272–9.PubMedGoogle Scholar
  143. 143.
    Nida DL, Rahman MS, Carlson KD, Richards-Kortum R, Follen M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol Oncol 2005;99:S89–94.PubMedGoogle Scholar
  144. 144.
    Rahman M, Abd-El-Barr M, Mack V, Tkaczyk T, Sokolov K, Richards-Kortum R, et al. Optical imaging of cervical pre-cancers with structured illumination: an integrated approach. Gynecol Oncol 2005;99:S112–5.PubMedGoogle Scholar
  145. 145.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003;63:1999–2004.PubMedGoogle Scholar
  146. 146.
    El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005;5:829–34.PubMedGoogle Scholar
  147. 147.
    Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002;4:235–60.PubMedGoogle Scholar
  148. 148.
    Negrin RS, Contag CH. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 2006;6:484–90.PubMedGoogle Scholar
  149. 149.
    Liang Q, Yamamoto M, Curiel DT, Herschman HR. Noninvasive imaging of transcriptionally restricted transgene expression following intratumoural injection of an adenovirus in which the COX-2 promoter drives a reporter gene. Mol Imaging Biol 2004;6:395–404.PubMedGoogle Scholar
  150. 150.
    Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumour vasculature in living subjects. Nano Lett 2006;6:669–76.PubMedGoogle Scholar
  151. 151.
    Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.PubMedGoogle Scholar
  152. 152.
    Cai W, Gambhir SS, Chen X. Multimodality tumour imaging targeting integrin αvβ3. Biotechniques 2005;39:S6–S17.CrossRefGoogle Scholar
  153. 153.
    Taroni P, Danesini G, Torricelli A, Pifferi A, Spinelli L, Cubeddu R. Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J Biomed Opt 2004;9:464–73.PubMedGoogle Scholar
  154. 154.
    Intes X. Time-domain optical mammography SoftScan: initial results. Acad Radiol 2005;12:934–47.PubMedGoogle Scholar
  155. 155.
    Winter PM, Caruthers SD, Wickline SA, Lanza GM. Molecular imaging by MRI. Curr Cardiol Rep 2006;8:65–9.PubMedGoogle Scholar
  156. 156.
    Sosnovik DE, Weissleder R. Emerging concepts in molecular MRI. Curr Opin Biotechnol 2007;18:4–10.PubMedGoogle Scholar
  157. 157.
    Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M. Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 1998;75:626–34.PubMedGoogle Scholar
  158. 158.
    Bakir MA, Eccles S, Babich JW, Aftab N, Styles J, Dean CJ, et al. c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 1992;33:2154–60.PubMedGoogle Scholar
  159. 159.
    Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29:599–606.PubMedGoogle Scholar
  160. 160.
    Palm S, Enmon RM, Jr., Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of 86Y-trastuzumab for 90Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44:1148–55.PubMedGoogle Scholar
  161. 161.
    Bruskin A, Sivaev I, Persson M, Lundqvist H, Carlsson J, Sjoberg S, et al. Radiobromination of monoclonal antibody using potassium [76Br] (4 isothiocyanatobenzyl-ammonio)-bromo-decahydro-closo-dodecaborate (Bromo-DABI). Nucl Med Biol 2004;31:205–11.PubMedGoogle Scholar
  162. 162.
    Winberg KJ, Persson M, Malmstrom PU, Sjoberg S, Tolmachev V. Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1-) ion. Nucl Med Biol 2004;31:425–33.PubMedGoogle Scholar
  163. 163.
    Mume E, Orlova A, Malmstrom PU, Lundqvist H, Sjoberg S, Tolmachev V. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl Med Biol 2005;32:613–22.PubMedGoogle Scholar
  164. 164.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumour vascular permeability and the EPR effect in macromolecular therapeutics. A review. J Control Release 2000;65:271–84.PubMedGoogle Scholar
  165. 165.
    Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y. Tumour targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 2004;277:39–61.PubMedGoogle Scholar
  166. 166.
    Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells 2005;20:17–29.PubMedGoogle Scholar
  167. 167.
    Maynard J, Georgiou G. Antibody engineering. Annu Rev Biomed Eng 2000;2:339–76.PubMedGoogle Scholar
  168. 168.
    Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701–6.PubMedGoogle Scholar
  169. 169.
    Drysdale MJ, Brough PA, Massey A, Jensen MR, Schoepfer J. Targeting Hsp90 for the treatment of cancer. Curr Opin Drug Discov Devel 2006;9:483–95.PubMedGoogle Scholar
  170. 170.
    Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 2002;8:986–93.PubMedGoogle Scholar
  171. 171.
    Citri A, Kochupurakkal BS, Yarden Y. The Achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 2004;3:51–60.PubMedGoogle Scholar
  172. 172.
    Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumour response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 2006;47:793–6.PubMedGoogle Scholar
  173. 173.
    Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ, et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 2005;65:5907–16.PubMedGoogle Scholar
  174. 174.
    Gonzalez Trotter DE, Manjeshwar RM, Doss M, Shaller C, Robinson MK, Tandon R, et al. Quantitation of small-animal 124I activity distributions using a clinical PET/CT scanner. J Nucl Med 2004;45:1237–44.PubMedGoogle Scholar
  175. 175.
    Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumour xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471–8.PubMedGoogle Scholar
  176. 176.
    Williams LE, Liu A, Wu AM, Odom-Maryon T, Chai A, Raubitschek AA, et al. Figures of merit (FOMs) for imaging and therapy using monoclonal antibodies. Med Phys 1995;22:2025–7.PubMedGoogle Scholar
  177. 177.
    Williams LE, Wu AM, Yazaki PJ, Liu A, Raubitschek AA, Shively JE, et al. Numerical selection of optimal tumour imaging agents with application to engineered antibodies. Cancer Biother Radiopharm 2001;16:25–35.PubMedGoogle Scholar
  178. 178.
    Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.PubMedGoogle Scholar
  179. 179.
    Shively JE. 18F labeling for immuno-PET: where speed and contrast meet. J Nucl Med 2007;48:170–2.PubMedGoogle Scholar
  180. 180.
    Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel 2004;17:455–62.PubMedGoogle Scholar
  181. 181.
    Steffen AC, Wikman M, Tolmachev V, Adams GP, Nilsson FY, Stahl S, et al. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics. Cancer Biother Radiopharm 2005;20:239–48.PubMedGoogle Scholar
  182. 182.
    Tran T, Orlova A, Sivaev I, Sandstrom M, Tolmachev V. Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting affibody ligand. Int J Mol Med 2007;19:485–93.PubMedGoogle Scholar
  183. 183.
    Mume E, Orlova A, Larsson B, Nilsson AS, Nilsson FY, Sjoberg S, et al. Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2005;16:1547–55.PubMedGoogle Scholar
  184. 184.
    Saga T, Endo K, Akiyama T, Sakahara H, Koizumi M, Watanabe Y, et al. Scintigraphic detection of overexpressed c-erbB-2 protooncogene products by a class-switched murine anti-c-erbB-2 protein monoclonal antibody. Cancer Res 1991;51:990–4.PubMedGoogle Scholar
  185. 185.
    Allan SM, Dean C, Fernando I, Eccles S, Styles J, McCready VR, et al. Radioimmunolocalisation in breast cancer using the gene product of c-erbB2 as the target antigen. Br J Cancer 1993;67:706–12.PubMedGoogle Scholar
  186. 186.
    Meenakshi A, Kumar RS, Ganesh V, Kumar NS. Preliminary study on radioimmunodiagnosis of experimental tumour models using technetium-99m-labeled anti-C-erbB-2 monoclonal antibody. Tumouri 2002;88:507–12.Google Scholar
  187. 187.
    Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006;24:2276–82.PubMedGoogle Scholar
  188. 188.
    Blend MJ, Stastny JJ, Swanson SM, Brechbiel MW. Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radiopharm 2003;18:355–63.PubMedGoogle Scholar
  189. 189.
    Persson M, Tolmachev V, Andersson K, Gedda L, Sandstrom M, Carlsson J. [177Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 2005;32:1457–62.PubMedGoogle Scholar
  190. 190.
    Tang Y, Scollard D, Chen P, Wang J, Holloway C, Reilly RM. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 2005;26:427–32.PubMedGoogle Scholar
  191. 191.
    Tang Y, Wang J, Scollard DA, Mondal H, Holloway C, Kahn HJ, et al. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 2005;32:51–8.PubMedGoogle Scholar
  192. 192.
    Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68.PubMedGoogle Scholar
  193. 193.
    Orlova A, Nilsson FY, Wikman M, Widstrom C, Stahl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumours. J Nucl Med 2006;47:512–9.PubMedGoogle Scholar
  194. 194.
    Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, et al. Tumour imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 2006;66:4339–48.PubMedGoogle Scholar
  195. 195.
    Fields GB, Noble RL. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 1990;35:161–214.PubMedCrossRefGoogle Scholar
  196. 196.
    Engfeldt T, Orlova A, Tran T, Bruskin A, Widstrom C, Karlstrom AE, et al. Imaging of HER2-expressing tumours using a synthetic affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 2007;34:722–33.PubMedGoogle Scholar
  197. 197.
    Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, et al. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumour-targeting affibody molecules. Bioconjug Chem 2007;18:549–58.PubMedGoogle Scholar
  198. 198.
    Tolmachev V, Nilsson FY, Widstrom C, Andersson K, Rosik D, Gedda L, et al. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumours. J Nucl Med 2006;47:846–53.PubMedGoogle Scholar
  199. 199.
    Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumours. Cancer Res 2007;67:2178–86.PubMedGoogle Scholar
  200. 200.
    Fortin MA, Orlova A, Malmstrom PU, Tolmachev V. Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 2007;19:285–91.PubMedGoogle Scholar
  201. 201.
    Steffen AC, Almqvist Y, Chyan MK, Lundqvist H, Tolmachev V, Wilbur DS, et al. Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncol Rep 2007;17:1141–7.PubMedGoogle Scholar
  202. 202.
    Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res 2007;67:2773–82.PubMedGoogle Scholar
  203. 203.
    Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6.Google Scholar
  204. 204.
    Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–75.PubMedGoogle Scholar
  205. 205.
    Tochon-Danguy HJ, Sachinidis JI, Egan GF, Chan JG, Berlangieri SU, McKay WJ, et al. Positron emission tomography: radioisotope and radiopharmaceutical production. Australas Phys Eng Sci Med 1999;22:136–44.PubMedGoogle Scholar
  206. 206.
    Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci 1999;112 Pt 11:1733–41.PubMedGoogle Scholar
  207. 207.
    Thomas TP, Myaing MT, Ye JY, Candido K, Kotlyar A, Beals J, et al. Detection and analysis of tumour fluorescence using a two-photon optical fiber probe. Biophys J 2004;86:3959–65.PubMedGoogle Scholar
  208. 208.
    Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 2004;14:1124–9.PubMedGoogle Scholar
  209. 209.
    Montet X, Ntziachristos V, Grimm J, Weissleder R. Tomographic fluorescence mapping of tumour targets. Cancer Res 2005;65:6330–6.PubMedGoogle Scholar
  210. 210.
    Miyawaki A, Sawano A, Kogure T. Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 2003;Suppl:S1–7.PubMedGoogle Scholar
  211. 211.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006;312:217–24.PubMedGoogle Scholar
  212. 212.
    Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013–6.PubMedGoogle Scholar
  213. 213.
    Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–8.PubMedGoogle Scholar
  214. 214.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.PubMedGoogle Scholar
  215. 215.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435–46.PubMedGoogle Scholar
  216. 216.
    Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 2007;7:2567–81.PubMedGoogle Scholar
  217. 217.
    Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2007;2:265–81.Google Scholar
  218. 218.
    Li-Shishido S, Watanabe TM, Tada H, Higuchi H, Ohuchi N. Reduction in nonfluorescence state of quantum dots on an immunofluorescence staining. Biochem Biophys Res Commun 2006;351:7–13.PubMedGoogle Scholar
  219. 219.
    Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 2007;129:2871–9.PubMedGoogle Scholar
  220. 220.
    Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003;21:41–6.PubMedGoogle Scholar
  221. 221.
    Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumours of mice. Cancer Res 2007;67:1138–44.PubMedGoogle Scholar
  222. 222.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11.PubMedGoogle Scholar
  223. 223.
    Stevenson M. Therapeutic potential of RNA interference. N Engl J Med 2004;351:1772–7.PubMedGoogle Scholar
  224. 224.
    Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature 2004;431:338–42.PubMedGoogle Scholar
  225. 225.
    Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 2007;28:1565–71.PubMedGoogle Scholar
  226. 226.
    Payne BP, Venugopalan V, Mikic BB, Nishioka NS. Optoacoustic determination of optical attenuation depth using interferometric detection. J Biomed Opt 2003;8:264–72.PubMedGoogle Scholar
  227. 227.
    Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumours using optoacoustic tomography. Mol Imaging Biol 2004;6:341–9.PubMedGoogle Scholar
  228. 228.
    Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al. Metal nanoshells. Ann Biomed Eng 2006;34:15–22.PubMedGoogle Scholar
  229. 229.
    Loo C, Hirsch L, Lee MH, Chang E, West J, Halas N, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 2005;30:1012–4.PubMedGoogle Scholar
  230. 230.
    Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709–11.PubMedGoogle Scholar
  231. 231.
    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007;7:1318–22.PubMedGoogle Scholar
  232. 232.
    Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003;49:403–8.PubMedGoogle Scholar
  233. 233.
    Artemov D, Mori N, Ravi R, Bhujwalla ZM. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003;63:2723–7.PubMedGoogle Scholar
  234. 234.
    Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumour antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843–50.PubMedGoogle Scholar
  235. 235.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005;127:5732–3.PubMedGoogle Scholar
  236. 236.
    Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007;13:95–9.PubMedGoogle Scholar
  237. 237.
    Daldrup-Link HE, Meier R, Rudelius M, Piontek G, Piert M, Metz S, et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumours with magnetic resonance imaging. Eur Radiol 2005;15:4–13.PubMedGoogle Scholar
  238. 238.
    Liu G, He J, Dou S, Gupta S, Rusckowski M, Hnatowich DJ. Further investigations of morpholino pretargeting in mice—establishing quantitative relations in tumour. Eur J Nucl Med Mol Imaging 2005;32:1115–23.PubMedGoogle Scholar
  239. 239.
    Paganelli G, Chinol M. Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30:773–6.PubMedCrossRefGoogle Scholar
  240. 240.
    Sharkey RM, Cardillo TM, Rossi EA, Chang CH, Karacay H, McBride WJ, et al. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 2005;11:1250–5.PubMedGoogle Scholar
  241. 241.
    Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S.PubMedGoogle Scholar
  242. 242.
    Perkins AC, Frier M. Radionuclide imaging in drug development. Curr Pharm Des 2004;10:2907–21.PubMedGoogle Scholar
  243. 243.
    Haberkorn U, Altmann A. Radionuclide imaging in the post-genomic era. J Cell Biochem Suppl 2002;39:1–10.PubMedGoogle Scholar
  244. 244.
    Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imaging 1995;13:1119–24.PubMedGoogle Scholar
  245. 245.
    Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, et al. Molecular optical imaging of therapeutic targets of cancer. Adv Cancer Res 2007;96:299–344.PubMedGoogle Scholar
  246. 246.
    Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965–70.PubMedGoogle Scholar
  247. 247.
    Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75 Spec No:S24–30.PubMedGoogle Scholar
  248. 248.
    Parra HS, Cavina R, Latteri F, Zucali PA, Campagnoli E, Morenghi E, et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib (‘Iressa’, ZD1839) in non-small-cell lung cancer. Br J Cancer 2004;91:208–12.PubMedGoogle Scholar
  249. 249.
    Han SW, Hwang PG, Chung DH, Kim DW, Im SA, Kim YT, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer 2005;113:109–15.PubMedGoogle Scholar
  250. 250.
    Cappuzzo F, Gregorc V, Rossi E, Cancellieri A, Magrini E, Paties CT, et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol 2003;21:2658–63.PubMedGoogle Scholar
  251. 251.
    Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003;9:5078–84.PubMedGoogle Scholar
  252. 252.
    Cai W, Ebrahimnejad A, Chen K, Cao Q, Li ZB, Tice DA, et al. Quantitative radioimmunoPET imaging of EphA2 in tumour-bearing mice. Eur J Nucl Med Mol Imaging 2007. DOI  10.1007/s00259-007-0503-5.

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X ProgramStanford University School of MedicineStanfordUSA

Personalised recommendations