In vivo amyloid imaging with PET in frontotemporal dementia

  • Henry Engler
  • Alexander Frizell Santillo
  • Shu Xia Wang
  • Maria Lindau
  • Irina Savitcheva
  • Agneta Nordberg
  • Lars Lannfelt
  • Bengt Långström
  • Lena Kilander
Original article

Abstract

Background

N-methyl[11C]2-(4′methylaminophenyl)-6-hydroxy-benzothiazole (PIB) is a positron emission tomography (PET) tracer with amyloid binding properties which allows in vivo measurement of cerebral amyloid load in Alzheimer’s disease (AD). Frontotemporal dementia (FTD) is a syndrome that can be clinically difficult to distinguish from AD, but in FTD amyloid deposition is not a characteristic pathological finding.

Purpose

The aim of this study is to investigate PIB retention in FTD.

Methods

Ten patients with the diagnosis of FTD participated. The diagnosis was based on clinical and neuropsychological examination, computed tomography or magnetic resonance imaging scan, and PET with 18Fluoro-2-deoxy-d-glucose (FDG). The PIB retention, measured in regions of interest, was normalised to a reference region (cerebellum). The results were compared with PIB retention data previously obtained from 17 AD patients with positive PIB retention and eight healthy controls (HC) with negative PIB retention. Statistical analysis was performed with a students t-test with significance level set to 0.00625 after Bonferroni correction.

Results

Eight FTD patients showed significantly lower PIB retention compared to AD in frontal (p < 0.0001), parietal (p < 0.0001), temporal (p = 0.0001), and occipital (p = 0.0003) cortices as well as in putamina (p < 0.0001). The PIB uptake in these FTD patients did not differ significantly from the HC in any region. However, two of the 10 FTD patients showed PIB retention similar to AD patients.

Conclusion

The majority of FTD patients displayed no PIB retention. Thus, PIB could potentially aid in differentiating between FTD and AD.

Keywords

Frontotemporal dementia Amyloid PET PIB AD 

Notes

Acknowledgements

The authors wish to thank the Uppsala University Amersham’s Fund (project number UU0058) and the Emma Pettersson Foundation, Sweden, for providing economic support. We thank the staff of Uppsala Imanet for their dedication and professionalism performing this study, in addition to the patients and their relatives for their participation.

References

  1. 1.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound B. Ann Neurol 2004;55:306–319.PubMedCrossRefGoogle Scholar
  2. 2.
    Price JC, Klunk WE, Lopresti BJ, Lu X, Hodge JA, Ziolko SK, et al. Kinetic modelling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005;25:1528–1547.PubMedCrossRefGoogle Scholar
  3. 3.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD) part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 1991;41:479–486.PubMedGoogle Scholar
  4. 4.
    McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia. Arch Neurol 2001;58:1803–1809.PubMedCrossRefGoogle Scholar
  5. 5.
    Hodges JR. Frontotemporal dementia (Pick’s disease): clinical features and assessment. Neurology 2001;56(Suppl 4):S6–10.PubMedGoogle Scholar
  6. 6.
    Neary D, Snowden JS, Gustavsson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546–1554.PubMedGoogle Scholar
  7. 7.
    Kitagaki H, Mori E, Yamaji S, Ishii K, Hirono N, Kobashi S, et al. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 1998;208:431–439.PubMedGoogle Scholar
  8. 8.
    Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med 2005;46:233–239.PubMedGoogle Scholar
  9. 9.
    Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–198.PubMedCrossRefGoogle Scholar
  10. 10.
    Claeson L-E, Esbjornsson E, Carte’ B-M, Wahlbin M. Manual to Claeson-Dahls learning test for clinical use. Stockholm: Psykologiförlaget AB; 1971.Google Scholar
  11. 11.
    Schmidt M. Rey auditory verbal learning test: a handbook. Los Angeles, California: Western Psychological Services; 1996.Google Scholar
  12. 12.
    Rascovsky K, Salmon DP, Ho GJ, Galasko D, Peavy GM, Hansen LA, et al. Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology 2002;58:1801–1808.PubMedGoogle Scholar
  13. 13.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:939–944.PubMedGoogle Scholar
  14. 14.
    Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006;129:2856–2866.PubMedCrossRefGoogle Scholar
  15. 15.
    Andersson JL, Thurfjell L. Implementation and validation of a fully automatic system for intra- and interindividual registration of PET brain scans. J Comput Assist Tomogr 1997;21:136–144.PubMedCrossRefGoogle Scholar
  16. 16.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalisations. J Cereb Blood Flow Metab 1983;3:1–7.PubMedGoogle Scholar
  17. 17.
    Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005;46:1959–1972.PubMedGoogle Scholar
  18. 18.
    Yamaguchi H, Hiriai S, Morimatsu M, Shoji M, Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol (Berl) 1989;77:314–319.CrossRefGoogle Scholar
  19. 19.
    Blomquist G, Ringheim A, Estrada S, Höglund U, Frändberg P, Nylén G, et al. Influx and net accumulation of PIB compared with CBF in a rhesus monkey. EANM05, Istanbul, Turkey. EJNM 2005;32(Suppl 1):S263.Google Scholar
  20. 20.
    Kertez A, Mc Monagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:1996–2005.CrossRefGoogle Scholar
  21. 21.
    Litvan I, Agid Y, Sastrj BS, Jankovic J, Wenning GK, Goetz CG, et al. What are the obstacles for an accurate clinical diagnosis of Pick’s disease? A clinicopathological study. Neurology 1997;48:62–69.Google Scholar
  22. 22.
    Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Förstl H, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28(1):42–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Hulette CH, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM. Neuropathological changes in “normal” aging: evidence for preclinical Alzheimer’s disease in cognitively normal individuals. J Neuropathol Exp Neurol 1998;57:1168–1174.PubMedCrossRefGoogle Scholar
  24. 24.
    Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003;62:1087–1095.PubMedGoogle Scholar
  25. 25.
    Klunk WE, Wang Y, Huang G, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-Methylaminophenyl)Benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 2003;23:2086–2092.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Henry Engler
    • 1
    • 2
    • 3
    • 4
  • Alexander Frizell Santillo
    • 5
  • Shu Xia Wang
    • 6
  • Maria Lindau
    • 5
  • Irina Savitcheva
    • 2
  • Agneta Nordberg
    • 7
    • 8
  • Lars Lannfelt
    • 5
  • Bengt Långström
    • 4
    • 9
  • Lena Kilander
    • 5
  1. 1.Department of Nuclear MedicineUruguay University Hospital of Clinics and Faculty of ScienceMontevideoUruguay
  2. 2.Department of Nuclear MedicineUppsala University HospitalUppsalaSweden
  3. 3.Department of Medical SciencesUppsala UniversityUppsalaSweden
  4. 4.Uppsala ImanetGE HealthcareUppsalaSweden
  5. 5.Department of Public Health and Caring Sciences/GeriatricsUppsala UniversityUppsalaSweden
  6. 6.Weilun PET CentreGuangdong Provincial People’s HospitalGuangzhouChina
  7. 7.Division of Molecular NeuropharmacologyKarolinska InstituteStockholmSweden
  8. 8.Department of Geriatric MedicineKarolinska University Hospital HuddingeStockholmSweden
  9. 9.Departments of Biochemistry and Organic ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations