Targeting of matrix metalloproteinase activation for noninvasive detection of vulnerable atherosclerotic lesions

  • Dagmar Hartung
  • Michael Schäfers
  • Shinichiro Fujimoto
  • Bodo Levkau
  • Navneet Narula
  • Klaus Kopka
  • Renu Virmani
  • Chris Reutelingsperger
  • Leo Hofstra
  • Frank D. Kolodgie
  • Artiom Petrov
  • Jagat Narula
Article

Abstract

Introduction

Inflammation plays an important role in vulnerability of atherosclerotic plaques to rupture and hence acute coronary events. The monocyte–macrophage infiltration in plaques leads to upregulation of cytokines and metalloproteinase enzymes.

Matrix metalloproteinases result in matrix dissolution and consequently expansive remodeling of the vessel. They also contribute to attenuation of fibrous cap and hence susceptibility to rupture. Assessment of metalloproteinase expression and activity should provide information about plaque instability.

Keywords

Vascular remodeling Atherosclerosis Thin cap fibroatheroma Matrix metalloproteinase Radionuclide imaging 

References

  1. 1.
    Burke A, Farb A, Malcolm GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary artery disease who died suddenly. N Engl J Med 1997;336:1276–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–75.PubMedGoogle Scholar
  3. 3.
    Lendon CL, Davies MJ, Born GV. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991;87:87–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Narula J, Virmani R, Zaret BL. Radionuclide imaging of atherosclerotic lesions. In: Braunwald E, Dilsizian V, Narula J, editors. Atlas of nuclear cardiology. Philadelphia: Current Medicine; 2003. p. 217–35.Google Scholar
  6. 6.
    Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47:C57–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Dunphy MP, Freimann A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278–84.PubMedGoogle Scholar
  8. 8.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation. Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Tawakol A, Migrino RQ, Bashian GG, Bedris I S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol 2006;47:C19–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999;6:41–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Fishmann AJ, Rubin RH, Khaw BA, Kramer PB, Wilkinson R, Ahmad M, et al. Radionuclide imaging of experimental atherosclerosis with nonspecific polyclonal immunoglobulin G. J Nucl Med 1989;30:1095–100.Google Scholar
  14. 14.
    Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study. Circulation 2001;104:203–8.PubMedGoogle Scholar
  15. 15.
    Petrov A, Hartung D, Kolodgie F, Narula N, Haider N, Kohut A, et al. Radionuclide imaging inflammation in atherosclerosis by targeting CCR-2 receptors: Would identification of vulnerable plaques become feasible? J Nucl Cardiology 2003;10(1):S37.Google Scholar
  16. 16.
    Sadeghi MM, Schechner JS, Krassilnikova S, Gharanei AA, Zhang J, Kirkiles-Smith N, et al. Vascular cell adhesion molecule-1-targeted detection of endothelial activation in human microvasculature. Transplant Proc 2004;36:1585–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005;85:1–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 2002;3:207–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001;86:324–33.PubMedGoogle Scholar
  20. 20.
    Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006;69:614–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitor of metalloproteinases: structure, function and biochemistry. Circ Res 2003;92:827–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999;99:2503–9.PubMedGoogle Scholar
  23. 23.
    Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 2001;104:1899–904.PubMedCrossRefGoogle Scholar
  24. 24.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493–503.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P. Circumferential stress and matrix metalloproteinase 1 in human atherosclerosis. Implication for plaque rupture. Arterioscler Thromb Vasc Biol 1996;16:1070–3.PubMedGoogle Scholar
  26. 26.
    Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, et al. Matrilysin is expressed by lipid-laden macrophages at sides of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci USA 1996;93:9748–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Hannson GK, Jonasson L, Lojstehd B, Kocher O. Localization of T lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques. Atherosclerosis 1988;72:135–41.CrossRefGoogle Scholar
  28. 28.
    Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 1998;32:368–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003;107:1579–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Chase AJ, Newby AC. Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodeling. J Vasc Res 2003;40:329–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad, and the ugly. Circ Res 2002;90:251–62.PubMedGoogle Scholar
  32. 32.
    Ye S, Watts GF, Mandalia S, Humphries SE, Henney AM. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J 1995;73:209–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Pearce E, Tregouet DA, Samnegard A, Morgan AR, Cox C, Hamsten A, et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res 2005;97:1070–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson JL, Frietsche-Danielson R, Behrendt M, Westin-Eriksson A, Wennbo H, Herslof M, et al. Effect of broad-spectrum matrix metalloproteinase inhibition on atherosclerotic plaque stability. Cardiovasc Res 2006;71:586–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM. Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol 2004;24:733–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Kolodgie F, Edwards S, Petrov A, Sachleben R, Hartung D, Weber DK, et al. Noninvasive detection of matrix metalloproteinase upregulation in experimental atherosclerotic lesions and its abrogation by dietary modification. Circulation 2001;104:II694.Google Scholar
  37. 37.
    Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005;112:3157–67.PubMedCrossRefGoogle Scholar
  38. 38.
    Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Atherosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1994;14:840–56.Google Scholar
  39. 39.
    Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 1992;12:120–34.PubMedGoogle Scholar
  40. 40.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995;15:1512–31.PubMedGoogle Scholar
  41. 41.
    Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 1998;97:2433–44.PubMedGoogle Scholar
  42. 42.
    Sukhova GK, Williams JK, Libby P. Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol 2002;22:1452–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Luan Z, Chase AL, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 2003;23:769–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Kopka K, Breyholz HJ, Wagner S, Law MP, Riemann B, Schroer S, et al. Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo. Nucl Med Biol 2004;31:257–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Schäfers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schäfers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004;109:2554–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Deguchi J, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, et al. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006;114:55–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Gupta S, Reutelingsperger C, Narula J. Mortals turn me on... J Nucl Med 2005;46:906–8.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dagmar Hartung
    • 1
    • 2
  • Michael Schäfers
    • 3
  • Shinichiro Fujimoto
    • 1
  • Bodo Levkau
    • 4
  • Navneet Narula
    • 1
  • Klaus Kopka
    • 3
  • Renu Virmani
    • 5
  • Chris Reutelingsperger
    • 6
  • Leo Hofstra
    • 6
  • Frank D. Kolodgie
    • 5
  • Artiom Petrov
    • 1
  • Jagat Narula
    • 1
  1. 1.School of MedicineUniversity of CaliforniaIrvineUSA
  2. 2.Department of RadiologySchool of MedicineHannoverGermany
  3. 3.Department of Nuclear MedicineUniversity of MünsterMünsterGermany
  4. 4.Institute of PathophysiologyUniversity of Duisburg-EssenDuisburgGermany
  5. 5.Cardiovascular PathologyGaithersburgUSA
  6. 6.Cardiovascular Research InstituteMaastrichtThe Netherlands

Personalised recommendations