Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections

  • Laure Sarda-MantelEmail author
  • Azzam Saleh-Mghir
  • Mick M. Welling
  • Alain Meulemans
  • Jean-Marc Vrigneaud
  • Olivier Raguin
  • Florence Hervatin
  • Geneviève Martet
  • Françoise Chau
  • Rachida Lebtahi
  • Dominique Le Guludec
Original Article



99mTc-UBI 29-41 (UBI), an antimicrobial peptide, specifically targets bacteria. We tested the ability of UBI to discriminate between infected and uninfected prosthetic joints using a rabbit model previously validated.


Left knee arthroplasty was performed on 20 New Zealand rabbits, then 107 cfu of S. aureus (n = 12) or sterile saline (n = 8) was injected into the joint. On days 9 and 20 after surgery, planar UBI scintigraphy was performed in six infected and four uninfected rabbits, 1 h and 4 h p.i. (150 MBq), on a gamma camera. Operated-to-normal knee activity ratio (ONKR) was calculated on each scintigram. Then, after sacrifice, tissue samples of both knees were counted in a gamma counter.


One rabbit injected with sterile saline had cutaneous infection at sacrifice and was excluded from analysis. ONKR was higher in infected than in uninfected animals 4 h p.i. 20 days after surgery: 1.75  ±  0.48 vs 1.13 ± 0.11, p = 0.04. From 1 h to 4 h p.i., ONKR increased in 9/12 infected and 0/7 uninfected animals. According to UBI uptake intensity and kinetics, scintigraphy was truly positive in all infected cases on day 9 and in four of six infected cases on day 20. It was truly negative in two of three sterile inflamed prosthetic knees on day 9, and in all cases on day 20. Biodistribution studies revealed increased UBI uptake in periprosthetic tissues in all animals 9 days after surgery, and only in infected animals on day 20.


In this experimental study, 99mTc-UBI 29-41 scintigraphy permitted the early detection of acute prosthetic joint infection, and exclusion of infection in chronic sterile prosthetic joint inflammation.


Antimicrobial peptide Technetium Rabbits Prosthetic joint infection Scintigraphy 


  1. 1.
    Lentino JR. Infections associated with prosthetic knee and prosthetic hip. Curr Infect Dis Rep 2004;6:388–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Lidgren L, Knutson K, Stefansdottir A. Infection and arthritis. Infection of prosthetic joints. Best Pract Res Clin Rheumatol 2003;17:209–18.CrossRefPubMedGoogle Scholar
  3. 3.
    Bernard L, Hoffmeyer P, Assal M, Vaudaux P, Schrenzel J, Lew D. Trends in the treatment of orthopaedic prosthetic infections. J Antimicrob Chemother 2004;53:127–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004;351:1645–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Anguita-Alonso P, Hanssen AD, Patel R. Prosthetic joint infection. Expert Rev Anti Infect Ther 2005;3:797–804.CrossRefPubMedGoogle Scholar
  6. 6.
    Osmon DR, Hanssen AD, Patel R. Prosthetic joint infection: criteria for future definitions. Clin Orthop Relat Res 2005:89–90.Google Scholar
  7. 7.
    Bernard L, Lubbeke A, Stern R, Bru JP, Feron JM, Peyramond D, et al. Value of preoperative investigations in diagnosing prosthetic joint infection: retrospective cohort study and literature review. Scand J Infect Dis 2004;36:410–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Frank KL, Hanssen AD, Patel R. icaA is not a useful diagnostic marker for prosthetic joint infection. J Clin Microbiol 2004;42:4846–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gupta MN, Sturrock RD, Field M. Prospective comparative study of patients with culture proven and high suspicion of adult onset septic arthritis. Ann Rheum Dis 2003;62:327–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Patel R, Osmon DR, Hanssen AD. The diagnosis of prosthetic joint infection: current techniques and emerging technologies. Clin Orthop Relat Res 2005:55–8.Google Scholar
  11. 11.
    Palestro CJ. Nuclear medicine, the painful prosthetic joint, and orthopedic infection. J Nucl Med 2003;44:927–9.PubMedGoogle Scholar
  12. 12.
    Love C, Marwin SE, Tomas MB, Krauss ES, Tronco GG, Bhargava KK, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging. J Nucl Med 2004;45:1864–71.PubMedGoogle Scholar
  13. 13.
    Vanquickenborne B, Maes A, Nuyts J, Van Acker F, Stuyck J, Mulier M, et al. The value of 18FDG-PET for the detection of infected hip prosthesis. Eur J Nucl Med Mol Imaging 2003;30:705–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Joseph TN, Mujtaba M, Chen AL, Maurer SL, Zuckerman JD, Maldjian C, et al. Efficacy of combined technetium-99m sulfur colloid/indium-111 leukocyte scans to detect infected total hip and knee arthroplasties. J Arthroplasty 2001;16:753–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Vinjamuri S, Hall AV, Solanki KK, Bomanji J, Siraj Q, O’Shaughnessy E, et al. Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet 1996;347:233–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Yapar Z, Kibar M, Yapar AF, Togrul E, Kayaselcuk U, Sarpel Y. The efficacy of technetium-99m ciprofloxacin (Infecton) imaging in suspected orthopaedic infection: a comparison with sequential bone/gallium imaging. Eur J Nucl Med 2001;28:822–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Larikka MJ, Ahonen AK, Niemela O, Junila JA, Hamalainen MM, Britton K, et al. Comparison of 99mTc ciprofloxacin, 99mTc white blood cell and three-phase bone imaging in the diagnosis of hip prosthesis infections: improved diagnostic accuracy with extended imaging time. Nucl Med Commun 2002;23:655–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Dumarey N, Blocklet D, Appelboom T, Tant L, Schoutens A. Infecton is not specific for bacterial osteo-articular infective pathology. Eur J Nucl Med Mol Imaging 2002;29:530–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Sarda L, Saleh-Mghir A, Peker C, Meulemans A, Cremieux AC, Le Guludec D. Evaluation of 99mTc-ciprofloxacin scintigraphy in a rabbit model of Staphylococcus aureus prosthetic joint infection. J Nucl Med 2002;43:239–45.PubMedGoogle Scholar
  20. 20.
    Sarda L, Cremieux AC, Lebellec Y, Meulemans A, Lebtahi R, Hayem G, et al. GInability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J Nucl Med 2003;44:920–6.PubMedGoogle Scholar
  21. 21.
    Appelboom T, Emery P, Tant L, Dumarey N, Schoutens A. Evaluation of technetium-99m-ciprofloxacin (Infecton) for detecting sites of inflammation in arthritis. Rheumatology (Oxford) 2003;42:1179–82.CrossRefGoogle Scholar
  22. 22.
    Lupetti A, Welling MM, Pauwels EK, Nibbering PH. Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis 2003;3:223–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Ferro-Flores G, Arteaga de Murphy C, Pedraza-Lopez M, Melendez-Alafort L, Zhang YM, Rusckowski M, et al. In vitro and in vivo assessment of 99mTc-UBI specificity for bacteria. Nucl Med Biol 2003;30:597–603.CrossRefPubMedGoogle Scholar
  24. 24.
    Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 2000;27:292–301.CrossRefPubMedGoogle Scholar
  25. 25.
    Melendez-Alafort L, Rodriguez-Cortes J, Ferro-Flores G, Arteaga De Murphy C, Herrera-Rodriguez R, Mitsoura E, et al. Biokinetics of 99mTc-UBI 29-41 in humans. Nucl Med Biol 2004;31:373–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Welling MM, Lupetti A, Balter HS, Lanzzeri S, Souto B, Rey AM, et al. 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. J Nucl Med 2001;42:788–94.PubMedGoogle Scholar
  27. 27.
    Welling MM, Mongera S, Lupetti A, Balter HS, Bonetto V, Mazzi U, et al. Radiochemical and biological characteristics of 99mTc-UBI 29-41 for imaging of bacterial infections. Nucl Med Biol 2002;29:413–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Welling MM, Visentin R, Feitsma HI, Lupetti A, Pauwels EK, Nibbering PH. Infection detection in mice using 99mTc-labeled HYNIC and N2S2 chelate conjugated to the antimicrobial peptide UBI 29-41. Nucl Med Biol 2004;31:503–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Belmatoug N, Cremieux AC, Bleton R, Volk A, Saleh-Mghir A, Grossin M, et al. A new model of experimental prosthetic joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization. J Infect Dis 1996;174:414–7.PubMedGoogle Scholar
  30. 30.
    Cremieux AC, Mghir AS, Bleton R, Manteau M, Belmatoug N, Massias L, et al. Efficacy of sparfloxacin and autoradiographic diffusion pattern of [14C]sparfloxacin in experimental Staphylococcus aureus joint prosthesis infection. Antimicrob Agents Chemother 1996;40:2111–6.PubMedGoogle Scholar
  31. 31.
    Chun L, Yoon J, Song Y, Huie P, Regula D, Goodman S. The characterization of macrophages and osteoclasts in tissues harvested from revised total hip prostheses. J Biomed Mater Res 1999;48:899–903.CrossRefPubMedGoogle Scholar
  32. 32.
    Lupetti A, Pauwels EK, Nibbering PH, Welling MM. 99mTc-antimicrobial peptides: promising candidates for infection imaging. Q J Nucl Med 2003;47:238–45.PubMedGoogle Scholar
  33. 33.
    Park Y, Hahm KS. Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol 2005;38:507–16.PubMedGoogle Scholar
  34. 34.
    Ferro-Flores G, de Maria Ramirez F, Melendez-Alafort L, de Murphy CA, Pedraza-Lopez M. Molecular recognition and stability of 99mTc-UBI 29-41 based on experimental and semiempirical results. Appl Radiat Isot 2004;61:1261–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Akhtar MS, Qaisar A, Irfanullah J, Iqbal J, Khan B, Jehangir M, et al. Antimicrobial peptide 99mTc-ubiquicidin 29-41 as human infection-imaging agent: clinical trial. J Nucl Med 2005;46:567–73.PubMedGoogle Scholar
  36. 36.
    Nibbering PH, Welling MM, Paulusma-Annema A, Brouwer CP, Lupetti A, Pauwels EK. 99mTc-labeled UBI 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J Nucl Med 2004;45:321–6.PubMedGoogle Scholar
  37. 37.
    Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 2005;202:209–15.CrossRefPubMedGoogle Scholar
  38. 38.
    Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis 2001;33(Suppl 2):S94–106.CrossRefPubMedGoogle Scholar
  39. 39.
    Warnke PH, Springer IN, Russo PA, Wiltfang J, Essig H, Kosmahl M, et al. Innate immunity in human bone. Bone 2006;38:400–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Akhtar MS, Iqbal J, Khan MA, Irfanullah J, Jehangir M, Khan B, et al. 99mTc-labeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphylococcus aureus infection. J Nucl Med 2004;45:849–56.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laure Sarda-Mantel
    • 1
    • 2
    • 3
    Email author
  • Azzam Saleh-Mghir
    • 7
  • Mick M. Welling
    • 5
  • Alain Meulemans
    • 1
    • 2
    • 3
  • Jean-Marc Vrigneaud
    • 1
    • 2
    • 3
  • Olivier Raguin
    • 1
    • 2
    • 3
  • Florence Hervatin
    • 1
    • 6
  • Geneviève Martet
    • 1
    • 3
  • Françoise Chau
    • 1
    • 4
  • Rachida Lebtahi
    • 1
    • 2
    • 3
  • Dominique Le Guludec
    • 1
    • 2
    • 3
  1. 1.Université Denis Diderot-Paris 7, UMR S773ParisFrance
  2. 2.AP-HP, Groupe Hospitalier Bichat-BeaujonService de Médecine NucléaireParisFrance
  3. 3.INSERM, U773ParisFrance
  4. 4.Université Denis Diderot Paris 7, EA 3964ParisFrance
  5. 5.Department of Radiology, Section of Nuclear MedicineLeiden University Medical Center (LUCM)LeidenThe Netherlands
  6. 6.CEA, DSV/DRM/SHFJOrsayFrance
  7. 7.Université Versailles-St-Quentin, EA 3647GarchesFrance

Personalised recommendations