The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation

  • Piero Calvini
  • Guido Rodriguez
  • Fabrizio Inguglia
  • Alessandro Mignone
  • Ugo Paolo Guerra
  • Flavio Nobili
Original article

Abstract

Purpose

To design a novel algorithm (BasGan) for automatic segmentation of striatal 123I-FP-CIT SPECT.

Methods

The BasGan algorithm is based on a high-definition, three-dimensional (3D) striatal template, derived from Talairach’s atlas. A blurred template, obtained by convolving the former with a 3D Gaussian kernel (FWHM = 10 mm), approximates striatal activity distribution. The algorithm performs translations and scale transformation on the bicommissural aligned image to set the striatal templates with standard size in an appropriate initial position. An optimization protocol automatically performs fine adjustments in the positioning of blurred templates to best match the radioactive counts, and locates an occipital ROI for background evaluation. Partial volume effect correction is included in the process of uptake computation of caudate, putamen and background. Experimental validation was carried out by means of six acquisitions of an anthropomorphic striatal phantom. The BasGan software was applied to a first set of patients with Parkinson’s disease (PD) versus patients affected by essential tremor.

Results

A highly significant correlation was achieved between true binding potential and measured 123I activity from the phantom. 123I-FP-CIT uptake was significantly lower in all basal ganglia in the PD group versus controls with both BasGan and a conventional ROI method used for comparison, but particularly with the former. Correlations with the motor UPDRS score were far more significant with the BasGan.

Conclusion

The novel BasGan algorithm automatically performs the 3D segmentation of striata. Because co-registered MRI is not needed, it can be used by all nuclear medicine departments, since it is freely available on the Web.

Keywords

123I-FP-CIT SPECT Automatic VOIs Parkinson’s disease Nigrostriatal system Basal ganglia Anthropomorphic brain phantom 

References

  1. 1.
    Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of 123I-FP-CIT SPECT imaging: the 123I-FP-CIT Study Group. Mov Disord 2000;15:503–10.CrossRefPubMedGoogle Scholar
  2. 2.
    O’Brien JT, Colloby S, Fenwick J, Williams ED, Firbank M, Burn D, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61:919–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderate advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun 2001;22:721–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Marek K, Seibyl J, Shoulson I. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287:1653–61.CrossRefGoogle Scholar
  5. 5.
    Acton PD, Pilowsky LS, Kung HF, Ell PJ. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering. Eur J Nucl Med 1999;26:581–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Acton PD, Mozley PD, Kung HF. Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson’s disease. Eur J Nucl Med 1999;26:1413–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Koole M, Laere KV, De Walle RV, Vandenberghe S, Bouwens L, Lemahieu I, et al. MRI guided segmentation and quantification of SPECT images of the basal ganglia: a phantom study. Comput Med Imaging Graph 2001;25:165–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Habraken JBA, Booij J, Slomka P, Sokole EB, van Royen EA. Quantification and visualization of defects of the functional dopaminergic system using an automatic algorithm. J Nucl Med 1999;40:1091–7.PubMedGoogle Scholar
  9. 9.
    Radau PE, Limke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 2000;41:220–7.PubMedGoogle Scholar
  10. 10.
    Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 2005;46:1109–18.PubMedGoogle Scholar
  11. 11.
  12. 12.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical, 1988.Google Scholar
  13. 13.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994;13:601–9.CrossRefGoogle Scholar
  14. 14.
    Boccacci P, Bonetto P, Calvini P, Formiconi AR. A simple model for the the efficient correction of collimator blur in 3D SPECT imaging. Inverse Problems 1999;15:907–30.CrossRefGoogle Scholar
  15. 15.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson’s disease. Arch Neurol 1999;56:33–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Deuschl G, Bain P, Brin M; Ad Hoc Scientific Committee. Consensus statement of the Movement Disorder Society on tremor. Mov Disord 1998;13(suppl 3):2–23.PubMedGoogle Scholar
  17. 17.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine D2 receptor ligands. Eur J Nucl Med Mol Imaging 2002;29:BP23–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Hamann C, Koch W, Radau PE, Tatsch K. Iterative reconstruction or filtered backprojection for quantitative assessment of dopamine d2 receptor studies? J Nucl Med 2003;44:114P.Google Scholar
  19. 19.
    Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006;33:495–502.CrossRefPubMedGoogle Scholar
  20. 20.
    Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 2003;44:1184–93.PubMedGoogle Scholar
  21. 21.
    Soret M, Koulibaly PM, Darcourt J, Buvat I. Partial volume effect correction in SPECT for striatal uptake measurements in patients with neurodegenerative diseases: impact upon patient classification. Eur J Nucl Med Mol Imaging 2006;33:1062–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto N. A practical method for position-dependent Compton-scattered correction in single photon emission. IEEE Trans Med Imaging 1991;10:408–12.CrossRefGoogle Scholar
  23. 23.
    Dallal GE. The little handbook of statistical practice. http://www.tufts.edu/~gdallal/LHSP.HTM at the page http://www.tufts.edu/~gdallal/corr.htm
  24. 24.
    Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 1995;38:589–98.CrossRefPubMedGoogle Scholar
  25. 25.
    Carmack PS, Spence J, Gunst RF, Schucany WR, Woodward WA, Haleyb RW. Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. NeuroImage 2004;22:367–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Colloby SJ, O’Brien JT, Fenwick JD, Firbank MJ, Burn DJ, McKeith IG, et al. The application of statistical parametric mapping to 123I-FP-CIT SPECT in dementia with Lewy bodies, Alzheimer’s disease and Parkinson’s disease. NeuroImage 2004;23:956–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Van Laere K, Koole M, D’Asseler Y, Versijpt J, Audenaert K, Dumont F, et al. Automated stereotactic standardization of brain SPECT receptor data using single-photon transmission images. J Nucl Med 2001;42:361–75.PubMedGoogle Scholar
  28. 28.
    Lucignani G, Gobbo C, Moresco RM, Antonini A, Panzacchi A, Bonaldi L, et al. The feasibility of statistical parametric mapping for the analysis of positron emission tomography studies using 11C-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)-tropane in patients with movement disorders. Nucl Med Commun 2002;23:1047–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Piero Calvini
    • 1
  • Guido Rodriguez
    • 2
  • Fabrizio Inguglia
    • 3
  • Alessandro Mignone
    • 4
  • Ugo Paolo Guerra
    • 4
  • Flavio Nobili
    • 2
  1. 1.Department of PhysicsUniversity and INFNGenoaItaly
  2. 2.Clinical Neurophysiology, Department of Endocrinological and Metabolic SciencesUniversity of GenoaGenoaItaly
  3. 3.Department of Informatics and Information SciencesUniversity of GenoaGenoaItaly
  4. 4.Nuclear Medicine DivisionOspedali RiunitiBergamoItaly

Personalised recommendations