Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p

  • A. Broisat
  • L. M. Riou
  • V. Ardisson
  • D. Boturyn
  • P. Dumy
  • D. Fagret
  • C. Ghezzi
Molecular Imaging



VCAM-1 plays a major role in the chronic inflammatory processes present in vulnerable atherosclerotic plaques. The residues 75–84 (B2702-p) and 84–75/75–84 (B2702-rp) of the major histocompatibility complex-1 (MHC-1) molecule B2702 were previously shown to bind specifically to VCAM-1. We hypothesised that radiolabelled B2702-p and B2702-rp might have potential for the molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) expression in atherosclerotic plaques.


Preliminary biodistribution studies indicated that 125I-B2702-rp was unsuitable for in vivo imaging owing to extremely high lung uptake. 123I- or 99mTc-labelled B2702-p was injected intravenously to Watanabe heritable hyperlipidaemic rabbits (WHHL, n = 6) and control animals (n = 6). After 180 min, aortas were harvested for ex vivo autoradiographic imaging, gamma-well counting, VCAM-1 immunohistology and Sudan IV lipid staining.


Robust VCAM-1 immunostaining was observed in Sudan IV-positive and to a lesser extent in Sudan IV-negative areas of WHHL animals, whereas no expression was detected in control animals. Significant 2.9-fold and 1.9-fold increases in 123I-B2702-p and 99mTc-B2702-p aortic-to-blood ratios, respectively, were observed between WHHL and control animals (p < 0.05). Tracer uptake on ex vivo images co-localised with atherosclerotic plaques. Image quantification indicated a graded increase in 123I-B2702-p and 99mTc-B2702-p activities from control to Sudan IV-negative and to Sudan IV-positive areas, consistent with the observed pattern of VCAM-1 expression. Sudan IV-positive to control area tracer activity ratios were 17.0 ± 9.0 and 5.9 ± 1.8 for 123I-B2702-p and 99mTc-B2702-p, respectively.


Radiolabelled B2702-p is a potentially useful radiotracer for the molecular imaging of VCAM-1 in atherosclerosis.


Atherosclerosis Nuclear imaging Plaque VCAM-1 


  1. 1.
    Fuster V. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1995;9:2126–46.Google Scholar
  2. 2.
    Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844–50.PubMedGoogle Scholar
  3. 3.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell 2001;104:503–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient. A call for new definitions and risk assessment strategies: part I. Circulation 2003;108:1664–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Nemirovsky D. Imaging of high risk plaque. Cardiology 2003;100:160–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Chia MC. The role of adhesion molecules in atherosclerosis. Crit Rev Clin Lab Sci 1998;35:573–602.PubMedCrossRefGoogle Scholar
  9. 9.
    Huo Y, Ley K. Adhesion molecules and atherogenesis. Acta Physiol Scand 2001;173:35–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 1989;59:1203–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 2004;13:125–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclear leucocyte adhesion molecule during atherogenesis. Science 1991;251:788–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Malek AH, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, et al. Pattern of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999;85:199–207.PubMedGoogle Scholar
  15. 15.
    Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. J Clin Invest 2001;107:1209–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Cybulsky MI, Liyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1 but not ICAM-1, in early atherosclerosis. J Clin Invest 2001;107:1255–62.PubMedGoogle Scholar
  17. 17.
    Ling X, Tamaki T, Xiao Y, Kamangar S, Clayberger C, Lewis DB, et al. An immunosuppressive and anti-inflammatory HLA class I-derived peptides binds vascular cell adhesion molecule-1. Transplantation 2000;70:662–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Nossner E, Golberg JE, Naftzger C, Lyu SC, Clayberger C, Krensky AM. HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family. J Exp Med 1996;183:339–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Sörme P, Kahl-Knutsson B, Huflejt M, Nilsson UJ, Leffler H. Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions. Anal Biochem 2004;334:36–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999;6:41–53.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. J Clin Invest 1993;92:945–51.PubMedGoogle Scholar
  22. 22.
    O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1 and vascular adhesion molecule-1 in human atherosclerosis and their relation to intimal leucocyte content. Circulation 1996;93:672–82.PubMedGoogle Scholar
  23. 23.
    Kondo T, Watanabe Y. A heritable hyperlipidemic rabbit. Jikken Dobutsu 1975;24:89–94.PubMedGoogle Scholar
  24. 24.
    Buja LM, Clubb FJ, Bilheimer, Willerson JT. Pathobiology of human familial hypercholesterolemia and a related animal model, the Watanabe heritable hyperlipidaemic rabbit. Eur Heart J 1990;11(Suppl E):41–52.PubMedGoogle Scholar
  25. 25.
    Clubb FJ, Cerny JL, Defarrari DA, Butler-Aucoin MM, Willerson JT, Buja M. Development of atherosclerotic plaque with endothelial disruption in Watanabe heritable hyperlipidemic rabbit aorta. Cardiovasc Pathol 2001;9:1–11.CrossRefGoogle Scholar
  26. 26.
    Fruebis J, Gonzalez V, Silvestre M, Palinski W. Effect of probucol treatment on gene expression of VCAM-1, MCP-1, and M-CSF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis. Arterioscler Thromb Vasc Biol 1997;17:1289–302.PubMedGoogle Scholar
  27. 27.
    Hartung D, Sarai M, Petrov A, Kolodgie F, Narula N, Verjans J, et al. Resolution of apoptosis in atherosclerotic plaque by dietary modification and statin therapy. J Nucl Med 2005;46:2051–6.PubMedGoogle Scholar
  28. 28.
    Strauss HW, Grewal RK, Pandit-Taskar N. Molecular imaging in nuclear cardiology. Semin Nucl Med 2004;34:47–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabelled annexin V. Circulation 2003;108:3134–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detection of monocyte chemoattractant protein-1 in experimental atherosclerotic lesions. Circulation 2001;104:203–8.PubMedGoogle Scholar
  31. 31.
    Strauss HW, Blankenberg FG. Small is beautiful: specialty imaging devices and the growth of nuclear cardiology. J Nucl Med 2000;7:175–9.Google Scholar
  32. 32.
    Moreno PR, Muller JE. Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr Op Cardiol 2002;17:638–47.CrossRefGoogle Scholar
  33. 33.
    MacNeill BD, Lowe HC, Takano M, Fuster V, Jang IK. Intravascular modalities for detection of vulnerable plaque: current status. Artherioscler Thromb Vasc Biol 2003;23:1333–42.CrossRefGoogle Scholar
  34. 34.
    Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.PubMedGoogle Scholar
  35. 35.
    Vallabhajosula S, Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med 1997;38:1788–96.PubMedGoogle Scholar
  36. 36.
    Mitchel J, Waters D, Lai T, White M, Alberghini T, Salloum A, et al. Identification of coronary thrombus with a IIb/IIIa platelet inhibitor radiopharmaceutical, technetium-99m DMP-444: a canine model. Circulation 2000;101:1643–6.PubMedGoogle Scholar
  37. 37.
    Tsimikas S. Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am J Cardiol 2002;90(suppl L):22–7.CrossRefGoogle Scholar
  38. 38.
    Petrov A, Hartung D, Kolodgie F, Narula N, Haider N, Kohut A, et al. Imaging inflammation in atherosclerotic lesions by radiolabeled chemotactic peptide: would identification of vulnerable plaques become feasible? ACC 2003 835-1. J Am Coll Cardiol 2003;19:445-A.Google Scholar
  39. 39.
    Johnson LL, Schofield L, Donahay T, Narula N, Narula J. 99mTc-Annexin V imaging for detection of atherosclerotic lesions in porcine coronary arteries. J Nucl Med 2005;46:1186–93.PubMedGoogle Scholar
  40. 40.
    Schafers M, Rieman B, Kopka K, Breyholz HJ, Wagner S, Schäfers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004;109:2554–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Galili O, Herrmann J, Woodrum J, Sattler KJ, Lerman LO, Lerman A. Adventitial vasa vasorum heterogeneity among different vascular beds. J Vasc Surg. 2004;40:529–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Strauss HW, Narula J, Blankenberg FG. Radioimaging to identify myocardial cell death and probably injury. Lancet 2000;356:180–1.PubMedCrossRefGoogle Scholar
  43. 43.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, et al. Noninvasive detection of plaque instability with use of radiolabeled annexin-5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Broisat
    • 1
    • 2
  • L. M. Riou
    • 1
    • 2
  • V. Ardisson
    • 1
    • 2
  • D. Boturyn
    • 2
    • 3
  • P. Dumy
    • 2
    • 3
  • D. Fagret
    • 1
    • 2
  • C. Ghezzi
    • 1
    • 2
  1. 1.INSERM, U340, Radiopharmaceutiques BiocliniquesLa TroncheFrance
  2. 2.Université de GrenobleSaint Martin d’HèresFrance
  3. 3.LEDSS V - Ingénierie Moléculaire, CNRS UMR 5616Saint Martin d’HèresFrance

Personalised recommendations