Advertisement

EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues

  • T. Vander Borght
  • S. Asenbaum
  • P. Bartenstein
  • C. Halldin
  • Ö. Kapucu
  • K. Van Laere
  • A. Varrone
  • K. TatschEmail author
Guidelines

Purpose

These guidelines summarise the views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The purpose of the guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting and reporting the results of PET or SPECT imaging of brain tumours using radiolabelled amino acid analogues. The aim is to help in achieving a high quality of tumour imaging using radiolabelled amino acids, which will allow the diagnostic impact of this technique in neuro-oncological practice to be increased.

The present document has been inspired by a review of the literature and the individual experience of experts in European countries. The guidelines are intended to present information specifically adapted to European practice. The information provided should be taken in the context of local conditions and regulations.

Background information and definitions

Increased amino acid transport in brain tumour cells results from overexpression of the...

Keywords

Tumour Uptake Normal Brain Tissue Focal Cortical Dysplasia Amino Acid Uptake Label Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The members of the ENC acknowledge the assistance provided by the following persons (in alphabetical order) in reading the guidelines and providing constructive comments based on their expertise: R.G. Blasberg, USA, E. Bombardieri, Italy, K. Ericson, Sweden, S. Goldman, Belgium, and K. Herholz, T. Kuwert, K.J. Langen and W. Weber, Germany.

References

  1. 1.
    Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–45PubMedGoogle Scholar
  2. 2.
    Langen KJ, Pauleit D, Coenen HH. 3-[123I]Iodo-α-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2002;29:631Google Scholar
  3. 3.
    Laverman P, Boerman OC, Corstens FH, Oyen WJ. Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 2002;29:681–690PubMedCrossRefGoogle Scholar
  4. 4.
    Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004;10:7163–7170PubMedCrossRefGoogle Scholar
  5. 5.
    Pauleit D, Floeth F, Herzog H, Hamacher K, Tellmann L, Müller HW, et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethy)-L-tyrosine. Eur J Nucl Med Mol Imaging 2003;30:519–524PubMedCrossRefGoogle Scholar
  6. 6.
    Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of18F-FDG and11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 2004;45:1293–1298PubMedGoogle Scholar
  7. 7.
    Riemann B, Papke K, Hoess N, Kuwert T, Weckesser M, Matheja P, et al. Noninvasive grading of untreated gliomas: a comparative study of MR imaging and 3-(iodine 123)-L-alpha-methyltyrosine SPECT. Radiology 2002;225:567–574PubMedGoogle Scholar
  8. 8.
    Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, et al. Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 2003;30:868–873PubMedCrossRefGoogle Scholar
  9. 9.
    De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001;95:746–750PubMedCrossRefGoogle Scholar
  10. 10.
    Levivier M, Massager N, Wikler D, Lorenzoni J, Ruiz S, Devriendt D, et al. Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 2004;45:1146–1154PubMedGoogle Scholar
  11. 11.
    Lahoutte T, Caveliers V, Franken PR, Bossuyt A, Mertens J, Everaert H. Increased tumor uptake of 3-123I-iodo-L-alpha-methyltyrosine after preloading with amino acids: an in vivo animal imaging study. J Nucl Med 2002;43:1201–1206PubMedGoogle Scholar
  12. 12.
    Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 1998;25:629–633PubMedCrossRefGoogle Scholar
  13. 13.
    Schmidt D, Langen KJ, Herzog H, Wirths J, Holschbach M, Kiwit JC, et al. Whole-body kinetics and dosimetry of L-3-123I-iodo-alpha-methyltyrosine. Eur J Nucl Med 1997;24:1162–1166PubMedGoogle Scholar
  14. 14.
    Kuwert T, Morgenroth C, Woesler B, Matheja P, Palkovic S, Vollet B, et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 1996;23:1345–1353PubMedCrossRefGoogle Scholar
  15. 15.
    Kuwert T, Woesler B, Morgenroth C, Lerch H, Schafers M, Palkovic S, et al. Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 1998;39:23–27PubMedGoogle Scholar
  16. 16.
    Weber WA, Dick S, Reidl G, Dzewas B, Busch R, Feldmann HJ, et al. Correlation between postoperative 3-[123I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med 2001;42:1144–1150PubMedGoogle Scholar
  17. 17.
    Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005;32:39–51PubMedCrossRefGoogle Scholar
  18. 18.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678–687PubMedCrossRefGoogle Scholar
  19. 19.
    Cook GJ, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999;26:1363–1378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Vander Borght
    • 1
  • S. Asenbaum
    • 2
  • P. Bartenstein
    • 3
  • C. Halldin
    • 4
  • Ö. Kapucu
    • 5
  • K. Van Laere
    • 6
  • A. Varrone
    • 7
  • K. Tatsch
    • 8
    Email author
  1. 1.Nuclear Medicine Division, Mont-Godinne Medical CenterUniversity Catholique de LouvainLouvainBelgium
  2. 2.Department of NeurologyMedical University of ViennaViennaAustria
  3. 3.Department of Nuclear MedicineJohannes Gutenberg UniversityMainzGermany
  4. 4.Department of Clinical Neuroscience, Section of PsychiatryKarolinska InstitutetStockholmSweden
  5. 5.Department of Nuclear MedicineGazi UniversityAnkaraTurkey
  6. 6.Division of Nuclear MedicineUniversity Hospital Gasthuisberg, Katholieke Universiteit LeuvenLeuvenBelgium
  7. 7.Biostructure and Bioimaging InstituteNational Research CouncilNapoliItaly
  8. 8.Department of Nuclear MedicineLudwig-Maximilians UniversityMunichGermany

Personalised recommendations